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I} Historical Summary of The Project

In May 1963, DPProfessor G. . Dieke of The .Johns Hopking Uni-
versity submitted a proposal to the Office of Naval Rescarch for a laser
excited Rarnan spectroscopy program. He intended to apply Raman spec-
troscopy to the study of the crystal phonon ficld, primarily as a means
of gaining further insight into the interactions occurring in laser mate rials.
A research and development task order effective 16 June 1963 dircected
that "The contractor . . . . . shall employ laser techniques to study
the structure of crystals, principally fluorescent, One technique to be
employed will be the use of Raman scattering to measure the phonon
spectra of various crystalline substances. "

During the first year of this contract Professor Dicke and
Dr, Wilbur Peters carried out a series of stimulated Raman scattering
experiments using a Korad giant pulse ruby laser. Thesc experiments
were not completed, however, and were succeeded during the following
vear by spontaneous Raman scattering experiments utilizing a Spectra-
Physics 8 mw C. W, He-Ne laser,

Dr. Dieke died suddenly on August 25th 1965, and responsibility
for the work was taken over by Dr. H. Z. Cummins who subsequently
became principal investigator, At that time, a Speetra-Physics Model
125 He-Ne laser producing 70 mw of 6328 A radiation was acquired for
an exciting source, Subsequently a Spectra-Physics Model 140 one watt
argon ion lascr was added to the apparatus, along with a Spex tundem

grating monochromator and modern '"photon counting' electronics.
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In May 1963, Professor G. 11, Dieke of The Johns Hopkins Uni-
versity submitted a proposal to the Office of Naval Research for a laser
excited Rarnan spectroscopy program. He intended to apply Raman spec-
troscopy to the study of the crystal phonon ficld, primarily as a means
of gaining further insight into the interactions occurring in laser mate rials.
A resecarch and development task order effective 16 June 1963 dirceted
that ""The contractor . . . . . shall employ laser techniques to study
the structure of crystals, principally fluorescent, One technique to be
employed will be the usc of Raman scattering to measure the phonon
spectra of various crystalline substances, "

During the first year of this contract Professor Dieke and
Dr. Wilbur Peters carried out a series of stimulated Raman scattering
experiments using a Korad giant pulse ruby lascer, These experiments
were not completed, however, and were succeeded during the following
vear by spontancous Raman scattering experiments utilizing a Spectra-
Physics § mw C. W. He-Ne laser.

Dr. Dieke died suddenly on August 25th 1965, and responsibility
for the work was taken over by Dr. H. Z. Cummins who subsequently
became principal investigator, At that time, a Spectra-Physics Model
125 He-Ne laser producing 70 mw of 6328 A radiation was acquired for
an cxciting source, Subsequently a Spectra-Physics Model 140 one watt
argon ion laser was added to the apparatus, along with a Spex tandem

grating monochromator and modern '"photon counting" electronics.
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The contraet was extended year by year untll reaching {inal termi-

nation on .June 15, 1969,

1I) Scientifie Summary

initial cfforts aimed at exploiting stimulated Raman scattering
for investigating crystal phonon ficlds were abandoned after one year
for two reasons: (1) Stimulated scattering tends to oceur preferentially
in onc mode, and the other ecaker) mades are never seen, and (2) the
giant pulse required for producing stimulated scattering frequently
destroys the erystal,

Nuring the second vear, a spontaneous Raman scattering appa-
ratus was constructed using a Spectra-Physies Model 115 8 mw e -Ne
laser as the exciting source. The initial experiments with the apparaius
were on calcium fluoride and calcium tungstate crystals doped with
¢rbium and samarium. ‘These materials are also used as the active
medium in lasers. The many lines which were observed in the laser-
excited spectra, however, were found to be caused by fluorescence
rather than by Raman scattering, Therefore rare-ecarth doped crystals
woere not studied further, and attention turned to the Raman spectra of
purc crystals, and part.cularly to the modifications occurring in the
vicinity of a crystallinc phase transition.

The systems studied included calcium fluoride, calecium tungstate, N

second order Raman scattering in numerous crystals, strontium titanate,
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potassium dinydrogen phosphate and quartz. The technical results of
these experiments have been presented in previous reports, and many
have been published in the scientific literature. (See list of publications

above,)
The two major efforts of this project have been the Rar in
studics of strontium titanate and quartz :in the vicinity of their respec-
tive phase transitions. The quartz work which has been the principal
undertaking durirg the past two years is covered in detail in the remainder

of this report.

1) Light Scattering Studies of The Alpha-Reta Phase Transition in Quartz
This section which completes this report gives a detailed account

of the quartz work. The text was prepared by Stcphen M. Shapiro and

=23 submitted by him to Tke Johns Hopkins University in June 1969 in

a slightly expanded form in partial fulfillment of the requirements for

the Ph. D. degree,




LIGHT SCATTERING STUDIES OF THE ALPHA-BETA

PHASE TRANSITION IN QUARTZ

ABSTRACT

On the basis of early theoretical and experimental investigations
of the alpha-beta phase transition in crystalline quartz (Tt = 573°C),
it has been accepted that the transition is second order, the quartz
crystal exhibits critical opalescence at the transition temperature,
and the 207 cm~! Raman active, zone center optic vibration i{s the soft
mode responsible for the phase transition.

We have studied the Raman and Brillouin spectra of crystalline
quartz from 20°K to 873°K (600°C) with special attention devoted to
the alpha-beta transition region.

The Raman spectra of alpha quartz reveal 12 lires of E symmetry
whereas group theory predicts 8. Scott and Porto showed that the
additional lines are due to a lifting of the LO-TO degeneracies of some
of the E vibrations. There is little change in the frxeguency of the E
vibrations with increasing temperature.

The A} spectrum of alpha quartz reveals 5 lines whereas group theory
predicts 4. The lowest frequency A; line appears to play a dominant
role in the phase transition since its frequency decreases from 147 co~!
at rooa temperature to 30 cn-! in the transition region. Ar the tranmsi-~
tion temperature this line disappears from our spectra. On cooling
from the high temperature phase, there is a temperature hysteresis
since the mode suddenly reappears at a temperature 1 C° lower than the

temperature at which it disappears on heating. The frequency of the
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207 cm~! line decreases to 162 cm~! at the transition temperature and
is still present in the beta phase. Group theory appears to be vio-
lated in the beta phase since only one A, vibration is allowed and
two lines are observed. Scott attributed the anomalous temperature
dependence of the 147 cn~! and 207 cm~! excitations to anharmonic
coupling of the soft zone center phonon and two zone edge acoustic
phonons. The extra line in the alpha and beta phases is a second
order Raman line and does not violate the group theoretical calcula-
tions which are for 21) = 0,

Since the frequency of the soft mode does not decrease continu-
ously toward zero as the transition temperature is approached, the
“opalescence' 1is not due to diverging fluctuations associated with
the soft optic mode as had been proposed by Ginzburg.

In the Brillouin scattering experiments, acoustic phonons propa-
gating in the {100], [010}, [001], and [110] directions were studied.
The various elastic constants measured agreed with the results of
ultrasonic experiments. For each propagation direction studied, the
longitudinal acoustic modes exhibited a decrease in frequency of 10
to 20% on heating the crystal from room temperature to the trar .ition
temperature, and then an abrupt increase. On cooling there is a
gradual change in the frequency of the phonons. Since no acoustic
mode becomes unstsble at the transition temperature, the observed
"opalescence" is not due to diverging fluctuations assocciated with an
acoustic vibration.

The temperature hysteresis observed in the Raman and Brillouin
experiments suggeststhat quartz undergoes a first order tranmsition

rather than a second order transition.




Observations of the Rayleigh scattered light at the transition

temperature showed that the large increase in the elastic scattering
is due to essentially static inhomogeneities in the index of refrac-
tion., Two possible sources of the inhomogeneities are domain

boundaries between the two members of the Dauphiné twins coexisting
in the quartz crystal, or the formation, on heating, of beta quartz

regions within the alpha quartz crystal.
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INTRODUCTION

It has long been known that c.ystalline quartz undergoes a phase
transition at 573°C. At this temperature the crystal changes from the
low symmetry or alpha phase, belonging to the trigonal system (D3=32),
to the high symmetry or beta phase, belonging to the hexagonal system
(Dg=622). Also, at this temperature there are anomalous changes in
many of the propertlies of quartz, one of these being the intensity of
the scattered light. Yakovlev et al observed the spectrally unre-
solved scattered light and reported an increase in intensity of ~10Y
over the room temperature scattered light intensity, and because of
the appearance of the scattering column under white light illumination
interpreted this phenomenon as critical opalescence. Ginzburg applied
Landau's theory of second order phase transitions to quartz and calcu-
lated the increase in scattered light intensity at the transitic
temperature, obtaining a value which agreed with experiment. It thus
appeared that quartz underwent a second order phase transitiean and
exhibited critical opalescence at the transition temperature.

The present investigation explores the temperature dependence of
the spectral componznts of the scattered light in an effort to under-
stand the dynamics of the alpha-beta phase transition and determine the
cause of the opalescence.

In Chapter I we study the symmetry and properties of quartz.

Group theory is used to calculate the normal modes of vibration and the




displacement and mode correlation charts. The alpha-beta phase transi-
tion is discussed and Giniburg's theory of the quartz transition is
presented.

In Chapter 11 we discuss the Raman scattering experiments performed
on crystalline quartz. Following a brief introduction on the classical
theory of the Raman effect, the past Raman experiments on quartz are
reviewed. The apparatus used in the present investigation is described,
and the results of the temperature dependent experiments are presented
and discussad.

In Chapter III we discuss the Brillouin scattering experiments
performed on rrystalline quartz. In reviewing the theory of Brillouin
scattering in solids,we discuss the elastic and photoelastic behavior
of solids. The past experiments are reviewed and the apparatus used is
described. The chapter concludes with the results of thc Brillouin
studies.

In Chapter IV, the Raman and Brillouin experiments in the transition
temperature region (570°C - 576°C) are reported. In addition, the
results of the visual observations of the Rayleigh scattering are dis-
cussed and the probable cause of the "opalescence" is reported.

Finally, in Chapter V we summarize the results of our light scatter-

ing invesvigations of quartz.




CHAPTER 1
CRYSTALLINE QUARTZ: STRUCTURE AND PROPERTIES

The molecular unit comprising all forms of silica is §10,. The
difference Letween crystalline quartz and the other forms of Silica is
the particular arrangement of three molecular units to form one unit
cell. The translation of this cell in three directions in space will
generate a crystal whose space group is one of the 230 allowed space
groups.

Fig. I-1 shows the six principal phases of silica (1). The name
quartz applies to that form of Silica stable up to 867°C. Alpha, or
low quartz is the stable modifications of Si0, up to 573°C. At this
temperature quartz undergoes a transition to the beta, or high quartz
phase with an increase in the space group symmetry. From 867°C to
1470°C <ridymite is the stable form of Silica. Cristabolite, the
highest syumetry form, is stable from 1470°C up to the melting point
~f gilica, 1723°C. 1t is possible for the high temperature forms of
gilica to exist at room temperature, but only in a metastable state.

A well known example is vitceous 8ilica, or fused quartz, which is
liquid Si0, cooled under conditions such that it doesn't crystallize.
A detailed discussion of the various modifications of silica and their
properties is given by Sosman (1). We report only the light scatter-~

ing 2xperiments performed on quartz and its alpha-beta tramsition.
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The remainder of this section discusses the structure end proper-

ties of alpha and beta quartz. Group theory is used to cal ulate the
symmetry of the normal modes of vibratiun and to infer the directions
of the atomic displacements in the various modes. Finally, the cur-

rently accepted theory of the alpha-beta phase transir’on is discussed.

A. LOW TEMPERATURE (ALPHA) QUARTZ
1. Symmetry

Alpha, or lovr quartz is a member of the trigonal crystal system
and possesses a point symmetry of D3(332) called the trigonal trapezo-
hedral (2). The crystals belonging to this point group have a triad
axis denoted as the Z (or c) axis and three twofold axes in the plane
perpendicular to Z. The commonly used set of orthogonal axes estab-
lished by the IRE (3) to describe many ~” the physical properties of
quartz are the triad axis as Z, one of the twofold axes designated as
X, and Y is defined as perpendicular to Z and X. Often the X,Y,Z axes
are referred to as a, b and ¢. Many crystallographers use a di/ _rent
set of axes to describe quartz: X and Y are two of the three twofold
axes making an a~gle of 120° with one another, and Z is the threefold
axis.

To uncerstand the features of the structure and the interrelations
that exist in crystalline quartz, a projection of the crystal structure
onto the x-y plane, looking down the c axis, is useful. This projectiou
is shown in Fig. I-2 (4).

To describe the positions of the silicon and oxygen atoms, four
parameters are needed. Since each silicon atom is situated on the two-
foid X axis, one parameter, u, the distance from the Z axis to the

silicon atom defines the silicon's position. This number is a fraction
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7
of the lattice parameter in the X direction. Once one silicorn atom i
positioned, the others are generated by the symmetry elements. The
general position, x,y,z, of one oxygen atom is required, and the rest
are generated by symmetry. x and y are given in terms of fractions of
the lattice parameter a, and the coordinate z is given in terms of a
fraction of the lattice parameter in the Z direction, c. 1t is necessary
to note that the fractional coordinates of the atoms in alpha quartz are
given in relation to the crystallographers' set of axes, the nun-orthogonal
XYZ system mentioned abcve. Appendix A gives the crystallographic
information regarding the structure of quartz. In addition, other prop-
erties of quartz usefu! in later discussions are tabulated.

So far we have limited the discussion to the point symmetry, i.e.,
the symmetry described by keeping one point in the unit cell fixed. This
allows oniy rotations, reflections and rotatory reflections. There arc 32
allowed point groups (5). If we allow translations to be combined with
these 32 point groups, the 230 space groups are generated. Alpha guartz
is enantomorphic in that there are two space groups to which alpha quartz
belongs: D%(P3221) and D;(P3121) (2). The former contains a symmetry
operation which is a rotation of 120° about Z followed by a tramslation
in the Z direction of 2/3 of the cell edge, c. Another rotaticn and a
2/3 translation will bring the atom 1/3 of the way into the next cell.
Since the cells are identical, if the atom is in one cell it is in all of
them, so the atom is placed in thz starting cell, The third operation
moves the atom to the position corresponding to where it started. The
combined operation of a rotation and translation creates a screw axis which,
in this case, is a left handed screw axis. Dg(PBIZI) contains a symmetry
operation which is a 120° rotation followed by a translation of 1/3 the

cell edge, generating a right handed screw axis.




The space group Dz(P3221) corresponds to left hande quartz and
Dg(P3121) corresponds to right handed quartz. Since quartz is also
optically active, the names of the different forms tell how the plane of
polarization is rotated when light travels along the optic axis. When
these two enantomorphic forms of quartz exist simultaneousl!y in a crystal
the crystal is said to be twinned. This type of twinning is referred to
as Brazilian, or optical twinning {1). Since these optical twins rotate
the plane of polarization in different direciions, they can easily be
detected with crossed polaroids. In our experiments, all samples used
were free of optical twinning.

The other major type of twinning, the Dauphiné, or electrical, twin
is less easily detected and, as the name suggests, affects the electricrl
properties of quartz. The two members of this twin are related bv 180°
rotation about the Z axis as shown in Figs. I-2a and I-2b. The space group
symmetry properties of each type are the same. Twinning of this type is
not revealed by optical tests. However, the X axes (which are the elecectri:
axes in the two components) are opposed, and if the two types are present
the piezoelectric effect is diminished. Etching and electrical measure-
ments can reveal the existence of Dauphiné twinning.

Several authors have studied electrical twins in quartz crystals with
vegard to their motion, creation and reduction (., 6, 7). Tue general
result from these studies is that this type of twinning is extremely
difficult to control. More was learned about putting Dauphiné twinning
into quartz than removing it!

Dauphiné twinning occcurs naturally and can be produced readily at
room temperature by a small mechanical shock. River gquartz is exten-
sively” twinned at the surface as a result of being tumbled in the stream.
It is most likely that .n the cutting znd polishirg of cur crystals we

charged any pre-existing twins and introduced new ones.




The strategy frequently employed for removing Dauphiné twins is
to heat quartz well above the alpha-beta transiiion temperature where
the twinned crystal becor~s hom~geneous, and then control the cooling
rate so that twinning dces not reappear at lower temperatuies (6).

The amount of twinning produced is influenced by the rate of cooling
through the transition temperature, the size of the sample and the
original distribution of the twinning. Frondel found that slow cool-
ing tends to increase the amount of twinning produced and decrease

the amount of cracking (6). He found that inversion twinning always
occur-ed in plates of quartz over 1 mm. thick regardless of the cool-
ing conditions. He also found that when quartz is heated above the
transition temperature, the crystal retains a memory of what twin it
was vhile in its low temperature phase. This was observed in experi-
ments where quartz was cooled from the betra phase; the crystal was
more likely to go back into the same form which it possessed before
heating rather than to thz other form or the twin. Thie is apparently
due to the strains being created and per~isting #un the sample when the
twinning is lost. Heating the quartz 100°C above the tramsition
temperature does not erase the memory.

Since there are two possible equilibrium positicns available for
cach atom in the alpha phase of quartz (Fig. I-2a and I-2b) correspond-
ing to the two bruphiné twins, and since electrival twinning should
disappear on heating above the transition temperature, the concept of
electrical twinning appears to be an important consideration in under-

standing the phase tramsition.




In our experiments twinning went uncontrolled. However, the
reproducibility of the data within a temperature run where the transi-
tion region was traversed several times indicates that either the
twinning was changing in the same way each time, or was not affecting
the properties being measured.

In the types of twins described above, the Z axis is constant in
direction throughout the crystal. Many more types of twins are
possible involving variation of the orlentation of the Z axis but none
are frequent among natural crystals (1). The best known of these s
the Japanese twin, 1ts two parts being symmetrical wiih respect to one
of the trigonal bipyramid faces so that the Z axes in the two twins
meat at an angle of 104°. These types of twins can be detected by
inspection. Crystals used in our experiments were observed to be free

of such twinning.

2. Properties

The two properties which have led to extensive studies of quartz
are plezoelectricity and optical activity.

Piezoelectricity can be precisely defined as '"the electric polari-
zation produced by mechanical strain in crystals belonging to certailn
classes, the polarization being proportional to the strain and changing
sign with it. This 1s the direct effect. In the converse effect, a
plezoelectric crystal becomec strained when electrically polarized by
an amount proportional to the pclarizing fleld"(8).

We can express this statement in mathematical terms:
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Direct effect:

Ph - Z ehmxm

oy Ph = L dthm
m=1
Converse effect:
]
X = e E
m hél hm h
3
= Y 4
X
L
mw h=1 hmEh

where the quantities are defined: Eh is the electric field, Ph the
polarization, X the strain, and Xm the stress. The third rank tensor
quantities, dhm and e, are the piezoelectric strain and stress constants
respectively. h can take on values 1, 2, or 3 and m= 1, 2, 3, 4, 5, or

6. The subscripts are in their reduced form where pairs of subscripts

have been replaced by a single subscript, i.e. (9):

1 2 3 4 5 6}

{ll 22 33 23 13 12}

o 32 31 21

From che matrix of the piezocelectric constants (Appendix A) an X
or Y compressive or tensile stress in alpha quartz can produce polari-
zation in the X direction onlvy. The sign of the polarization depends
on the sign of the stress (tension or compression). The X axis is thus
polar and is called the electric axis. For right handed quartz the

plus direction is defined as having a positive charge on compression.




-

A shear s*tress can rroduce a polarization in the v or v directions.

Since the bottom row of the matrix representation of the pieczoclecr:iic
tensor contains all zeros no possibic streas can produce a polariza-
tion along the triad axis.

Quartz is probably the most widely used plezoelectric crvstal
although the effect is smaller than that in some other crystals such
as Rochelle Salt and KDP (8). The reasons for rhe widespread use of
quartz are its abundance, chemical stability, hardoess and the abilicty
to cut and polish quarts into auny shape.

The optical rotatory power of quartz is 18.5 angular degrees/rm.
near 6328 A, As mentioned above, right and left handed quartz will
rotate the plane of vibration cf the E vector of a plane polarized light
beam travelling along the optic axis in opposite directions. The con-
vention used is the following: right harded rotation is a rotation of
the electric vector in a clockwise direction looking against the
oncoming light. Left handed quartz rotates the vibration plane counter-

clockwise (10).

In most of our experiments, efforts were made to avoid seunding
light along the optic axis due to the difficulty in polarization assigr-
ments and intensity measurements. Only in the case where a Z phenen
was being studied was the optic axis in the scattering r~lane. In =2ll
other ezperiments, the scattering plane was the x-y plane and the ,

effects of optical activity were avoided. |
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B. HICH TEMPERATURE (BITA) QUARTZ

When quartz is heated above 573°C into its high temperature or
beta phase, the symmetry of the crystal changes (1). Beta quartz
belongs to the hexagonal crystal system with point symmetry D6(622) (2).
Beta quartz is still enantomorphic, DZ(P6222) and Dz(P6“22 » and has
the same helicity as the lower te:perature form, i.e., the handedness
is preserved. Fig.l-2c shows tho basal plan. (x-y) projection of the
oxygen and silicon atoms, By
looking at the special hexagonal unit cell, we see that in order to

form the 6 fold axis from the low temperaturc phase the silicons must

move along the two-fold axes to the vertices of the hexagon. The
oxygens move nearly perpendicular to the Si - O - Si plane to positions
equidistant from the silicons. Thus, in addition to the new six-fold
rotation symmetry, a new two-fold symmetry axis lying in the basal
plane connecting opposite oxygens is also crected.

Because of the higher symmetry of teta quartz, there is only one
positional parameter to be determined. This is the X coordinate of onc
oxygen. The other coordinates are related to this coordinate by sym-
metry as shown in Appendix A. Since the silicons occupy the vertices
of the hexagon, their x,y,z positions are given in terms of small
integer fractions of the lattice parametersa and c. Appendix A gives
the fractional coordinates for beta quartz, along with other physical
properties and constants,

Fig. 1-2 shows the relationship of beta quartz to the two Dauphiné
twins of alpha quartz. We see that the atomic positions {n the beta

quartz are the average atomic positions of the two Nauphiné twins of




alpha quartz.

Since the atomic positions in the beta phase occupy the mean
position of the alpha twins, one would expect Dauphiné twinning o
disappear on passing into the high temperature phuase. This is alsc
expected since tne piezoelectric coefficient dll goes Lo ceio as
the transition temperature 1is approached and is zerc in the beta
phase. Thus, because of tne higher symmetry, the polarity of the X
axis has disappeared. This is observed, but, as wenticuaed shove, oun

cooling the crystal "remembers" its twin form dve to strajus poersist-

ing in the high temperature phase (11).

C. NORMAL MODE ANALYSIS OF QUARTZ

In a crystalline solid containing N atoums, there are a total of
3N vibrational motions since each atom has 3 tramslational degrecs cf
freedon.. For macroscopic samples, N is a very large number and there
is an extremely large number of modes. The problem of calculating
the properties of these modes is reduced to manageable proportions when
the tt .ncslational symmetry of the solid is taken into account. Trans-
lational symmetry means that there exist basis wvectors sueh that the
crystal structure remains invariant under transiation through any vect

which is the sum of intepral multiples of the hasis vectors. The

physical arrangement of the whole crystal can be defined if we specily
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the contents of a single unit cell. The macroscopic crystal is
generated by repeated translations of this unit cell in directions
defined by the basis vectors. Since all unit cells are equivalent it
is sufficient to consider the motions of the atoms in one unit cell.
If there are n atoms in a primitive unit cell, there will be 3In
branches of the dispersion curve, frequency of vibration & vs
momentum q. (In the trigenal and hexagonal crystal systems, corre-
sponding to alpha and beta quartz, the unit cells are primitive.) A
typical dispersion curve is shown in Fig. I-3. The three branches
with @ - 0 as q » G are the acoustic branches and the remaining 3n-3
branches are the optic branches. 1In the dispersion curve, q can take
on values from O to *108cm=!. For those modes that produce light
scattering, q is on the order of 105cm‘1, which is small compared to
108cm-!. Thus the approximation q = 0 is made and in the following
discussion the term "modes" refers to the 3n modes of vibration with
q=0.

If the interatomic forces are known, the vibrational modes can be
completely determined. One sets up the dynamical matrix which is the
matrix of the coefficients of the quadratic term of the potential
energy expansion in terms of particle displacement coordinates. From
this matrix the eigenvalues can be computed. A new set of coordinates
are defined which are linear combinations of the displacement coordi-~
nates. If the transformation matrix,which defines our new coordinates,
simultaneousiy diagonalizes the kinetic and potential energies, then
the new coordinates are called the normal coordinates. 1In terms of

these coordinates, the Hamiltonian bas the form of a sum of simple




(q)
\/ e
\ |
|
. R

=T ~ T
=g q=0 Q=g

Fig. I-3. A typical dispersion curve for lattice vibrations.
1 is the frequency of the lattice modes and q is the wavevector
(proportional to momentum). The 3 branches for which Q@ + 0 as
g * 0 are the acoustic branches and the remaining branches are the

optic branches.
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harmonic oscillator Hamiltonians where the kinetic and potential
energies are sums of squares only, without any cross terms. Each
normal coordinate corresponds to a vibration of the system with only
one frequency. These oscillations are spoken of as the normal modes
of vibracion (12).

For quartz, there are 9 atoms in a unit cell and 27 normal modes.
Although the interatomic forces are not known, they may be estimated
on the basis of a model. The calculation, though cumbersome, is pos-
sible. On the basis of a valence force model Kleinman and Spitzer
calculated the atomic motions aud frequencies for the eighc nondegen-
erate modes of vibration of alpha quartz (13).

Since the potential energy functicn is invariant under the symmetry
operations of the full space group of the lattice, restricticns are
imposed on the form of the potential and, thus, on the normal coordi-
nates. The normal coordinates will possess certain transformation
properties which can be determined by group theory. We cua also
determine the atomic displacement directions which occur for each
normal vibration. In addition, the correlation between the normal
nodes in alpha and beta quartz can be determined. Group theory, how-
ever, cannot yield values for the normal coordinates or the frequencies.
These can be found only when the interatomic forces are known.

Because of the translational symmetry and our q<0 assumption it is
sufficient to consider the crystal point groups. The collection of
symmetry operations which leave a crystal invariant, and one point
fixed, form a group which is one of the 32 crystal poiit groups. Each

element of the group can be represented by a matrix and the collection
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cf matrices form a representation of the group. The elements of a
grcup divide into classes. The invariant quantity for equivalent
represen-.itions of a class is the character, or trace, of the represen-
tation. A representation caa be reduced if a similarity transforma-
tion can be found which puts the representation into block form along
the diagonal. If this cannot be done, the representation is said to
be irreducible., For each point group the number of irredu.ible
representations equals the mumber of classes (14).

The invar’. ice of vhe potential energy under tne symmetry opera-
tivns of the group imrlies the invariance of the square of a single,
nondegenerate normal coordinate, or the invariance of a linear combina-
tion of the squares of p normal coordinates which have the same
frequency. The former corresponds to a one dimengional representation
and the latter to a p dimensional irreducible represecntation. In
general, a frecuency is p fold degenerate if the corresponding normal
coordinates transform according to a p dimensional irreducible repre-
sentation.

The characters for the irreducible representations of the 32
different point groups have been tabulated (14). Table I-1 gives the
character tables for alpha quartz (D3) and beta quartz (Dg). These
tables show, in addition to the characters of the different classes,
the transformation pr~pc.:ties of the orthogonal coordinates (x,y,z)
and various bilinear fcrms. These are useful in deriving the _election
rules for Raman and Infrared activity. The character tahle for alpha
quartz (D3) gives the characters for tne three classes: the identity

element, E; the twe vossible 120° rotations about the threefold axis,
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Table I-1

Character Tables

Alpha Quartz

D3(32) E 2C3 3¢,
x? 4+ yz,z2 Ay 1 1 ]
z A, 1 1 -1
(xz,yz)
(x,y) E 2 -1 )
0
G2 - y2,xy)
Beta Quartz
D¢ (622) E Cs 2C3 2C¢ 3C; acs”
x2 + y2,22 Ay 1 1 1 1 1 1
z Az 1 i 1 1 ~1 -1
By 1 -1 1 -1 1 -1
Bo 1 -1 ] -1 -1 1
(xz,yz) (x,v) E} 2 -2 -1 1 0 0
(x% - y2,xy) E; 2 2 -1 -1 0 0
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2C3; and 180° rotation about the three twofold axes in the x-y plane,
3C;. The irreducible representations are: Ay, a totally symmetric,
one dimensional representation in which the displacements of the atoms
are invariant under all operations in the group; A,, a one dimensional
representation in which the displacements are symmetric with respect

to the threefold rotation, but antisymmetric with respect to the two-
fold axes; E, a doubly degenerate, two dimensional representation where
the displacements are antisymmetric under C3 and unsymmetric under Cz.

There are two methods which can be used to find the number of
vibrations of each irreducible representation (or species) for a given
solid with a given symmetry. One method involves the consideration of
the individual molecules within the crystal and is called the site
method (15). The method we will employ is the unit cell analysis of
Bhagavantum and Venkatarayudu (16). In this method all the atoms in
the unit cell are considered.

We consider an arbitrary displacement of the atoms in a unit cell.
The collection of matrices representing the transformation properties
of an arbitrary displacement of all the atoms in the unit cell under
the symmetry operations of the group is called the total representation.
in quartz the total representation is a collection of 27 dimeunsional
matrices.

It can be shown that only thosz nuclei which remain fixed, or are
moved to an equivalent position, under the symmetry elements of the
group contribute to the characters of the total representation
matrices (l14). For a rotation by an angle 6, each atom that 1is trans-
formed into itself, or an equivalent omne, contributes (1 + 2cos8) to

the character.
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For the classes in alpha quartz (Di3):

x (E) ‘ x (Cy) x'(Céﬁ

s 1o |

where x'(o) is the contribution to the total character for one atom.

For the class:s in beta quartz (Dg):
X" (B) | x7(c;) | X (€3) | x7(Cg) | x(€3) | x(C)
s e o] o] o | ]

it is now necessary to determine how many atoms are unchanged under

the operations of each class. We will use the hexagonal cells in
Figs. I-2 and cyclic notation (i.e. (123) means atom 1 is moved

to position of atom 2, 2 to 3 and 3 to 1; no atom is unchanged):

Alpha quartz (Dj)

Number
C.ass Unchanged
E (1) (2) (3) (&) (5) (6) (7) (8) (9) 9
Cj (123) (468) (579) 0
{132) (486)(597) 0
Cz (1)(23){49) (58) (67) 1
(2) (13)(56) (47) (98) 1
(3)(12) (45)(96)(87) 1

Thus the characters of the total representation XT(P) for the

symmetry operations of alpha quartz with $ atoms in a unit cell:

| X (E) I xp(C3) | xp(C2) ‘

i i
!9 x 3 =27 ’ 0%x0 = 0 ! 1 x(-13 = -1/
1 |
: i




Doing the same for beta juartz with symmetry D.: (primed atoms
are equivalent to unprimed atoms and each primed and unprimed pair

is counted once)

Beta quartz (Dg)

3“8 27
Number
Class Atoms Unchanged
E (1) (2) (3) (4 (5) (6) (7) (8) {9) 9
c2(l|z) (117)(227)(337) (47) (58) (69) 3
C3(||2) (123) (468) (579) 0
(132) (486) (597) 0
Ce (l|2) (137217327) (456789) 0
(127317237) (587654) 0
¢z (llx) (3) (37) (45) (96) (87) 1
(1) (17) (49) (58) (67) 1
(2) (27) (47) (56) (98) 1
cztly) (8) (5)(372) (117)(273) 3
(4) (7)(317) (227) (372) 3
(6) (9) (127)(337) (217) 3
| @ | xp€) | xp(€3) [xpCe) | xg (€D | xg(D)
9x3 = 27 | 5x(-1) = -3 0 | 0 Ix(~1) = -1 | 3x(-1) = -3

An arbitrary displacement of the atoms in a unit cell can bhe written
as a linear combination of the normal coordinates. The total represen-
tation is a linear combination of the irreducible representations. In

terms of the characters, the standard reduction formula is (14):

xp(@ = § c'x! @) (1-1)
i
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where xT(U) is the character for the total representations fcr element ©.
i .th - .

x (o) 1is the character of the i irreducible representation of ele-

ment ¢ and ¢, is the number of times that irreducible representaticn

i

appears in the reduction of the total representation. To find cy we
multiply both sides of (I-1) by hoxi(o) (where h0 is the number of ele-

ments in each class), sum both sides over ¢ and apply the orthogonality

condition (14),

hx d @) = g8y (1-2)

Q-3

where g is the number of elements in group.

The result is

1 i _
;§ b xp(@)x (o) = ¢ (1-3)

Applying (:-3) to reduce the total representations found above:

Alpha quartz (D3):

CAl = 1/6 [1x27x1 + 0 + 3x(-1)x1l] = 4
CAz = 1/6 [1x27x1 + 0 + 3x(-1)x(-1)} = 5
CE = 1/6 [1x27x2 + 0 + 0] = 9

Be-a quartz (Dg):

(@]
]

1/12 [1x27x1 + 1x(-3)x1 + 0 4+ 0 + 3x(-1)x! + 3x(-3)x1] = 1

@]
]

1/12 [1x27x1 + 1x(-3)x1 + 0 + 0 + 3x(-1)x(-1)
+ 3x(-3)x(-1)] 3
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C, = 1/12 [1x27x1 + 1x(-3)x(-1) + 0 + 0 + 3x(-1)x1
+ 3x(-3)x(-1)) = 3

C. = 1/12 [1x27x1 + 1x(-3)x(-1) + C + 0 + 3x(~-1)x(-1)
+ 3x(-3)x(1)] = 2

C.. = 1/12 [1x27%2 + 1x(-3)x(-2) + 0+ 0 +0 +0] = 5

C. = 1/12 [1x27x2 + 1x(-3)x2 + 0+ 0+ 0 + 0] = 4
Thus the number of each species for alpha and beta quartz is:

Alpha: 4A), + 5A; + 9E

Beta: 1A} + 3A; + 3B) + 2By + SE; + 4Ep

(Since the E modes are doubly degenerate, while the A and B modes are
non-degenerate, the number of "degrees of freedom" in either phase is
27.)

To find the number of optic modes we have to subtract the three
acoustic modes from the total number. Acoustic modes are a result of a
translation of the entire unit cell. Thus the acoustic modes will
transform as the coordinates x, y, and z (14). From the character
tables we see that for D3, x, y and z transform as E + A2; and in Dg,

X, y and z transform as E; + A;. Thus the optic modes are:

Alpha quartz: 4A) + 5A; + 9E - (E + Ap)

: 4A) + LAy + BE

Beta quartz : Ay + 3A; + 3By + 2B + 5E} + 4E; -~ (E; + Ap)

A} + 2A; + 3By + 2By + 4E} + 4Ey




1. Displacement Correlation Charts

The displacement directions of the atoms in each of the normal
modes can be determined once the transformation properties of the
normal modes are known. Thig determination is made by comparing the
characters of the irreducible representations of the symmetry group
at the site of each atom (called the site group) with the characters
of the irreducible representation of the puint group of the lattice (17).
Since each site group must be a subgroup of the lattice ' ..nt group,
each site group will have symmetry elements {i.e. classes) in common
with the point group. For each one dimensional representation of the
point group of th: :.::tice we can find a one dimensional representation
of the site group, such that the characters for the classes in common
will be equal. By inspection of the character table we can determine
which particular one dimensional representation of the lattice point
group and the site group have the same characters. For each p (p > 1)
¢imensional irreducible representation of the lattice point group, we
can find either {) a single p dimensional irreducible representation
of the site group, or ii) a linear combination of m (m < p) dimensional
irreducible representations of the site group such that the characters
for the common classes will be equal. Again, by inspection of the
character tavles, the correlation hetween the p dimensional irreducitle
representation of the lattice point group and the irreducible reprecen-
tations of the site group can readily be determined. In constructing
the displacement correlation chart (Table 1-2), the above correlations
between the irreducible representations of the lattice point group and

the site groups are represented by straight lines.
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If a given species of vibration of the lattice is correlated with
an irreducible representation of the site group which transforms as a
component of a vector (x, y, or z), then motion of the atom 1is allowed
in that vector component direction. If the lattice vibration is cor-
related with an irreducible representation of the site group which does
not transform as any component of a vector, then the atom cannot move.

The above discussion is now applied to quartz. Table I-2 shows
the displacement correlation chart for alpha and beta quartz. In
alpha quartz the site symmetry of the oxygens is C;(the identity group)
and the site symmetry of the silicons is C, (2, 18). Next to the irre-
ducible representations of the site group are the vector components
which transform according to that particular representation. From this
chart we see that in all the normal modes of the lattice, the direction
of motion of the oxygens is not restricted. For the A; modes, the

motion of the silicons is limited to the x-y plane while for A, and E

modes, the displacement directions of the silicoms are not restricted.
These conclusions agree with Kleinman and Spitzer's valence force model
} calculations of the atomic motions associated with the A; and A, modes
(13). Figs. I-4a-4d are xy projectionsof the calculated particle dis-
placements for the 4 A; modes and show our measured frequencies at
room temperature. In the 4 A; modes, the z component of the silicon
atomeg 1s zero.

In the correlation chart for beta quartz the site symmetry of the

oxygens is C; and of the silicons is D;. We see that in the A; mode

of vibration the silicons cannot move and the oxygens move only in the

x-y plane. In the B; modes the silicons move only in the x-y plane and
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207 ¢m-! X 355 cm-!
(c)
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Fig. I-4. (a-d) Atomic displacements in the x-y plane for the
four A; vibrations based on the calculations of Kleinman and Spitzer (13).
The numbers are our measured values of the room temperature frequencies. .
(e) The atomic displacements necessary to change <rom alpha to beta quartz.
These are most closely approximated by the 207 cm~} vibration.
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the oxygen motion 1s unrestricted. In the E; and E; modes there are

no restrictions on the directions of atomic motion.

2. Mode Correlation Chart

Another type of correlation chart relates the normal modes of the
high and low temperature phases. This chart has physical significance
only when the fractional changes in the ncrmal coordinates and frequencies
which occur at the transition are very small. Under this condition the
transformation properties of the vibrations in the two phases are
related. This 1s the case for second order transitions where the normal
coordinates and frequencies change continuou: iy as the transition
region is traversed. (In fact the Landau theory is based on the con-
tinuous change of state of the crystal (19)). If the transition is
first order, where there may be a large, discontinuous change in the
interatomic forces in going from the high phase to the low phase, there
can be a large mixing of the different normal coordinates in the low
temperature phase. Because of this mixing there may be no correlation
of a normal vibration in the high temperature phase with a particular
normal vibration in the low temperature phase.

For quartz, the evidence suggests that the transition is first
order (20). However, from Young's measurements of atomic p:sitioms as
a function of temperature, we conclude that any discontinuous change in
the normal coordinates is small. Thus the symmetry projerties of the
normal vibrations of the two phases will be closely related and we can

congtruct a meaningful mode correlation chart.
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Since the lattice point group of alpha quartz is a subgroup of the
point group ¢f hLeta quartz, there will be classes in common. We deter-
mine; from the character tables, which irreducible representations of
alpha ana beta quartz have equal characters for classes in common.

The result is shown in Table I-3. The underlined species are the
irreducible representatious whose associated modes are Raman active.
The 8 doubly degeierate Raman active E modes of alpha quartz become

4 E; modes (Raman and infrared active) and 4 E; modes (Raman active

and infrared inactive) in the B phase. The 4 A, modes (Raman inactive,
infrared active) become 2 A, modes (Kaman inactive, infrared active)

and 2 B; inodes (Raman and infrared inactive). Of the four totally
symmetric, Raman active Aj modes {room temperature frequencies: 207,
355, 466 and 1081 cm~! (21, 22))only one is Raman active in the beta
ph~se. The remaining three becowe Raman and infrared inactive B; modes.

From the mode and displaceument correlation charts, we can infer
to which species the transition mode belongs.

In order to change from the beta to the alpha phase, the
silicons move in the x-y plane only: the z coordinates remain
unchange%?o Fror the displacement correlation chart for alpha quartz
{Table I-2a) we see that all three species of vibration allow motion
in the x-y plane and in the A, and E vibrations the silicon atcms can
also move in the z direction. In the beta to alpha transition the
silicons again move only in the x-y plane. From the beta quartz cor-
relation chart (Table I-2b) this can be a By, Ej, or 3; vibration.

Thus the mode associated with the transition is an A, Ay, or E mode
of alpha quartz which, from Table I-3, becomes a By, B; or E; mode,

respectively, of beta quartz.
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This is as far as group theory can gu. To gain more infermation
about which is the transition mode. one relies on experiments or calcu-
lations. Kleinman and Spitzer's calculation of the particle displace-
ments in the A vibrations show ~hat the silicons move in the =
direction (13). Thus the Az species in alpha quartz (B in beta quartz)
do not contain the transition mode. The transition mode is of either
A) or E species of alpha quartz. Again, appealing to the Kleinman
and Spitzer calculation of the particle displacements for the A] vibra-
tions we see that tiie 207 cm™! vibration most closely resembles the atomic
motions neceszary to chsange aivha quartz into beta quartz (13) (compare

Figs. 1-4a with I-4e). The assignment of the 207 cm~! vibration as the

M
[

transition mode agrees with the experimental observations (23) where

the properties of the 207 cm~! vibration possess a strong temperature
A_pendence, which is what one would expect of a transition mode. (Other
complications are introduced due to a coupling of the 207 cm-!, q=0

phonon with two q+0 phonons. This will be discussed in the next chap-

ter.)

D. THE ALPHA-BETA TRANSITION OF QUARTZ

The transition between alpha and beta quartz at atmospheric pressure
occurs at 573 t 1°C (1). Within 50 C° of this temperature many .f the
physical properties of quartz show a strong temperature depeudence.
Among these are the specific heat (24), molar volume (25), cocfficient
of thermal expansion (26), piezoelectric coefficients (27) and elastic
constantg (28). The most extensive study of quartz done in recent

years was an X-ray analysis of the transition by Young, who messured
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the fractional coordinates of the atomic positions (see Ch. 1, Sec. A,
and Appendix A) at several temperatures from room tenfpzrature up to
650°C (20).

As we shall demonstrate shortly, discontinuities in some cr the
properties < f quartz are expected in the tramsition region (19). To
study these discontinuities requires high temperature resolution. The
relative temperature resolution in the above experiments was never
better than 2 C® and many of the cxpcriments were performed with the
temperature changing. Under these conditions it was impeousible to
study effects occurring within 1 C° of the tranmsition and any discon-
tinuity occurring very near the transiticn temperature would not be
observed.

The stomic motions which result in a change from D3 to Dy symmetry
can be determined from a study of the special '.exagonal celis of alpha
and beta quartz (Figs. I-Z) T..e silicons move along the two-
fold (X) axes to occupy positions on tne vertices of the hexagon. This
creates a new sixfold rotation axis. Each silicon is now shared by
two unit cells. At the same time each oxygen within a sector moves to
occupy a position equidistant from neighboring silicons which leads
to the creation of aaditional twofold 2xes in the x-y planc.

A conceptual picture of the atouwic motions during the trarsition
is given by studying the SiO), tetrahedra. Alpha anu beta quar.z are
built up of Si0O, tetrahadra joined at ail cornmers. f[he transition can
be pictured as a rearrangement of the oxygens about the silicon to form
; regular tetrahedron, Conversely, we describe the

transition beta to alpha, as a "puckering” of the SiOy tetrahedra from
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the regular arrangement of the oxygens in the beta phate to tte
distorted shape in che alpha phase. This picture is useful if cne
wants to compare quartz with the first >rder transition in ferro-
electric 32Ti03 (29).

Anoter picture of the transition Is obtained by considering the
electrical twins of alpha quartz. This leads to a definition of an
order parsmeter to describe the transition. From Fig. I-2 we see that
the average atomic positionr in the beta phase lie midway between the
two alpha phase equilibrium positions. Thus the motions of the atoms
wili be along the lines connecting the atomic positious in the two
twins of quartz. Two parameters, one for the silicons and one for the

oxygens, define these motions. In terms of fractional coordinates and

lattice vectors they ar=:

a 8 1
s Texmlz-vla (1-4a)
which is motion along the X axis, and:

tazo_Th

\" X 2 ‘__)_( - %.‘
ox ox [(xc- xg) + (yu' ie) + (Ju ZB)fx‘ xg) '3 &

(z-¢)¢ (1-4b)

which is motion essentiaily in the y-z plane. Since the X parameters in
the alpha and beta phases are very azarly the same, there is little
change in the X direction of the oxygen atoms. y and § are positive

if the vector points toward the aj position of the atom and negative

if toward the a; position (Fig. I-2). Thus the sign of y or 6 will
determine which twin the crystal belongs to. It is also seen (by

definition) that the value of y and & will be zero in the high
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temperature phase. Thus, y or ¢ will serve as an order parameter in a
phenomenological description of the transition. They can have either
sign below the transition, go to zero continuously or discontinuously
at the transition temperature,and are zero above the transition
temperature. The temperaturc dependence of these quantities, calculated
from Young's data, 1is shown in Fig. I-5 (20).

Landau presented a phenomenological description of second order
phase transitions (19). He expanded the thermodynamic potential, ¢, in

terms of powers of the order parameter n:
¢(n) = ¢+ An+ an? + Bnd + gn“ +Cn° + %nﬁ + ... (1-5)

The coefficients are assumed to be functions of temperature and stress.

From the equilibrium conditions

3t (320
w), "0 G o

o Mo

certain restrictions are impc sed on the coefficients:

iy A=0 to satisfy the equilibrium condition (a¢/an)n = 0 for n= 0
at any temperatiure in the high temperature phase ’

ii) a; In the symmetric, high temperature phase the minimum of ¢

corresponds to n=0. This requires a>06. In the low temperature

phase the equilibrium state corresponds to nO*O. This requires

a<0. Thus a is assumed to have the temperature dependence

a=a'(T-Tt) where Tt is the transition temperature.

iii) B=D, to insure the existence of a minimum of ¢ at the transition

temperature.
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iv) b; In a second order transition (the type that Landau studied)

b>0. 1In a first order transition b<0. b=0 correiponds to a
transition at the Curie critical point (19).

v) C; We assume C=0. 1If C were different from zero the thermo-
dynamic potential associated with one value of the order
parameter in the low temperature phase {either +n or -n) would
be lower than the energy associated with the other value.

vi) ¢>0 to satisfy the equilibrium condition (azw/anz)n >0 for

)
large values of n.
The thermodynamic potential is rewritten:
- 2 b c6 _
¢(n) ¢0 + an® + 2n + gn (1-6)

The coefficients are related to measurable quantities. Their physical
significance depends on the system being studied. For example: in a
ferroelectric transition, a—1 is proportional to the dielectric suscep-
tibility; in a magnetic transition a_1 is proportional to the magnetic
susceptibility; 1in a liquid, alis proportional to the compressibility
(30).

The thermodynamic potential, ¢(n), is plotted in Fig. I-6. The
double minimum in the low temperature phase corresponds to the two
equilibrium values of the order parameter (fn). The single minimum in
the high temperature phase corresponds to n=0.

The phenomenological description of the transition involves deter-
mining how the double well in the low temperature rhase changes into

the single well as the temperature 1s increased. If b>J, we have a
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| & (7)
A

High Temperature
Phase

Low Temperature
phase

a, I Q, ;

Fig. 1-6. Thermodynamic potential, ¢(n) vs the order parameter, 1,
for the low temperature phase, T << T, and the high temperature phase,

T >> Tt.
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second order transition. The first derivatives of ¢ are continuous,

but the second derivatives (e.g. specific heat) contain singularities

or discortinuities. The barrier height will decrease as T T; ; and

at Tt the well has a flat bottom. The mean value of the order parameter
at this temperature is zero, but the fluctuations about the mean can

be very large. Above Tt there is a single well vith a minimum at

n=0.

If b<0 we have a first order transition and the first derivatives
of ¢ (e.g. volume and entropy) have discontinuities. As the temperature
is increased, a third well appears at n=0 at a temperature below Tt'
This allows a metastable state of the high temperature phase to coexist
with the stable low temperature phase. At Tt there are three equal
minima. As T is 1n;reased further, the central well becomes deeper and
the high temperature phase can exist only as a metastable state. Finally,
when T is sufficiently large, only one central minimum exists. The fac
that in a first order phase transition near the transition temperature,
both phases can exist simultaneously in the crystal leads to a possible
temperature hyrteresis in the observed properties. This 1is one of the
distinctions between first and second order transitions.

Since the coefficients of the expansion of ¢(n) are functions of
stress and temperature, there may exist a particular value of the stress
and temperature such that both a and b equel zero. On a stress vs
temperatur« plot, this point is called the Curie criticel point. It is
the point where a line of first order phase transitions meets the line
of second orier phase transitions (19). The curves ¢(n) vs n for b=0 for

different temperatures are similar to those for an ordinary second order

STIr

L . T




transition discussed above (b>0) except fur b=0 the well is flatter at

Tt since the lowest non-vanishing term for ¢(n) is propoctional to n®.
Ginzburg and Levanyuk (31) applied Landau's theory of second order

phase transitions to the alpha-beta quartz transition. They applied

the equilibriuw conditions to eq. (I-6) and found the equilibrium

values of the order parameter.

The linear temperature dependence of a was assumed:
a = a’(T - Tt) (I-7)
The eqnilibrium conditions yield values of U

n = 0 T> T (I-8a)

+ (-b + (b2 - 2ac)iL
c

) T < ’1‘t (I-8b)

The solution (I-8a) nO-O is for T>Tt; and the solution (I-8b) nO#O con-
tains the two values of N, associlated with the different twins for
T<Tt' At the transition temperature (T-Tt) the order parameter equals
zero since a=0.

It is possible that singularities at the transition temperature in
the derivatives of ¢(n) exist. Because of these singularities the
function (7 1is not analytic at Tt end lor this reason, the Landau
theory breaks down very close to the critical point (32).

Ginzburg's treatment of the alpha-beta phase tramsition predicted
an anomalous increase in the intensity of the scattered light at the
transition temperature. As is well knovm, fluctuations in the dielectric

constant, Ae, scatter light. These fluctuations can be written as a
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function of the fluctuations in the order parameter. (The dielectric
constant is also a function of the strain (x) and entropy (S) whose

mean square fluctuations are proportional to the Brillouin and Rayieigh

scattered intensities, respectively):

be = (35) 80® (1-9)
X,s
Ginzburg's selection of n® instead of n is an essential factor in
his argument (31). With the choice of n? we will show that opalescence
will be observed only at the Curie critical point.
Continuing wich Ginzburg's argument, we have near the transition
temperature in the lower temperature phase

be = (EE%) 2n 6n (I-10)

9
xS
The intensity of the scattered light 1is proportional to the mean square

fluctuations of the di-lectric constant:

2 _— .
I~ (8ed) = (§¥3) 4n 2 (8n)? (1-11)
"X, s

From thermedynamic fluctuation theory, the mean square fluctuation of
a quantity is (19)

_— kT
(an)? = (2% (1-12)

X.S

~I

3

where k is the Boltzman constant and T is the absolute temperature.
From the expansion (I-6), the mean square fluctuation of the order

parameter for T < Tt is:

.
e
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kT
(am? = ) (1-13)
4(b7-2ac) 2 n2
lThus the scattered light is proportional .:
;
: €42
I(T) ~ “"x,s T<T, (1-14) :
1
(b2-2ac) 2
and at Tt
3e (2 T,
I(T) 4" (W)x,s —b- T = TC (1-15)

If b>0, as in a second order phase transition far from the Curie
critical point, I(Tt) is finite. At the Curie critical point, a=b=0,
and from (I-13) and (I-15) one would expect the fluctuations and the

intensity of the scattered light to become inlinite. This obviously

cannot happen. To keep the intensity finite Ginzburg added another
term to the free energy expansion (I-6): d(Vn)2which is a gradient
term taking into account the correlations between fluctuations in adja-
cent volume elements. Performing the same type of calculations which
led to Eq (I-14) and including the d(¥n)? term in ¢(n) we obtain a new

expression for the intensity of the scattered light (31):

e ¢
(2 T
e (I-16)

I(T) )

h2-2ac + deq
2[vb2«2ac - b]

where q is the wave vector of the fourier comporent of the fluctuation

giving rise to the scattered light. This expression shows that the
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5 kT
(an)= = 7 (1-13}
4(b2-2ac) T2 n?
Thus the scattered light is proportional to:
£42
'%,) T
an?
I(T) w~ X,8 T<T (1-14)
1y,
(b2-2ac) 2
and at Tt
() ~ (—735)2 t T =T (1-15)
an X,S b t

If b>U, as in a second order phase transition far from the Curie
criticzl point, I(Tt) is finite. At the Curie critical point, a=b=0,
and from (I-13) ana (I-1>) one would expect the fluctuations and the
intersity of the scattered light to become iniinite. This obviously
cannot happon. To keep the intensity finite Girzburg added another
term to the free energy expansion (I-6): d(¥n)2which is a gradient
term taking into account the correlations between fiuctuations in adja-
cent volume elements. Performing the sam2 type of calculations which
led to Eq (I-14) and including the d(9n)? term in ¢(n) we obtain a new

expression for the intensity of the scatterad light (31):

3¢

(anz
A2-2ac + ——39
2{vbZ«Zac - b}

I(T) A (1I-16)

2

wh re q is the wave vector of the fourier comporent of the fluctuation

giving rise to rhe scattered light. This expression chows that the
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intensity remains finite at the Cnrie point when the term in d is
retaiued. Moreover, the above equations show that at the Curie point
I(Tt) = (. However, I{T)} has a sharp maximum just below the transition
temperature (31).

Gi.zburg was able to calculate the scattered intensity very near
the transition temperature compared to the scattered intensity at room
temper: ture.

If we neglect the correlation effects, the intensity of the
sca.tered lizht for a second order phase transition very near the Curie
critical point (b=0) 1is given by (I-15). In terms of the Rayleigh ratio
(scattering cross section per solid angie per unit volume) (I-15)
beconmes (33):

R(T)) = ;’—'—i— kT, (%% : % cn™} (I1-17)
)
where Ao is the wavelength of light.

Ginzburg put this 2quation in terms o: measurable quantities:

€,-€5.2
" 3E V2 a” B 4n2pn2
G2)* = ("Ez) - i (1-18)
o
where n 1s the index of refractior and 4n is the difference between the

index of refraction !n the alpha and the beta phase.

To find no” we assume that, in eq. I-8b, c is small; thus

a’(T,-T
+(;)

-a
n 5 — .

b

Squaring both sides we have:




I A
. a,?. (Tt-T)Z ‘
ﬂo = b2 (T.—.x.9)
From the jump in the specific heat for a second order phase transition
(19):
a’2T,
c = - -
A P b (7-20)
solving for (a-)?2
Ac b
a2 = B {1-21)
Tt
and substituting into (I-19)
Ac, (T,-T)?
4 p*t
= g I-2
n, o1 (1-22)
t
Thus from (I-18)
4n2An2Teb
( Jde = n-an (1-23)
an? Acp(Tt-T)2

and putting (I-23) into (I-17) we have the Rayleigh rati~ for the 1light

scattered by quartz near the transition temperature:

a2 4n?in?T?

-1
; Tz om (I-24)
Ao’ Cp( t )

R(Tt) =

Ginzburg substituted the following measured quantities (31) into eq. (I-24)

n = 1.56
an = 1.2 x 10-3 for T,-T = .1C°
(1-25)
Acp = 4.2 x 107 ergs/°C cm?
T = 846°K
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and found:
X “2 7 ’1
R(573°C) = ;;-k 239 x 107/ em (I-26)

This calculation depends critically upon the mear urement of the
index ot refraction vs temperat:.e. Since the numerical values chosen
for An and Tt-T wcre taken from an unpublished experiment, it is diffi-
cult to critically examine rlicse values. It should be pointed out that
the temperature interval chosen, Tt—T, is very impuiiaunt since it occurs
as the square of Tt_T' A value of Tt-T = 1 instead of equal to .1 would
decrease eq. (I-26) by two orders of magnitude.

In calculating the room temperature intensity, Ginzburg assumed
isotropy and used Einsteir'c rciation for light scattered by isothermal
density fluccuations (34). Ginzburg's value for the Rayleigh ratio at

20°C using the values in ref. (31) is:
o n2 : -11 1
R(20°C) = o k (155 x 107°%) cm™ (1-27)
A

If quartz is correctly treated as a solid, the Rayleigh ratio at 20°C
for light incident along the y directions and observed along the -x

direction, with z perpendicular to the scattering plane is (33):
2 11y -1
R(20°C) = a k (99 % 107*%) cm (1-28)

If we take the ratio of (I-26) to (I-27) (the Rayleigh ratiov of
quartz treated as an isotropic substance), we find the relative incruvase

in scattered intensity very near the transition temperature:

1(573°C) _ R(S73°C) _ 4 oy
T (20°C) - R (0°%) - 12x10 (=89

which is the value Ginzburg ohtained.

T
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If we take the ratio of (I-26) to (I-28) (the Rayleigh ratio of
quartz correctly treated as a solid) we find the relative increase in
scattered intensity very near the trausition temperature:

1(573°C) R(573°C)

= l. -
I (20°C) R (20°C) 2.4 x 10 (1-30)

Results (I-29) and (I-30) are not inccnsistent with one another consid-
ering the errors on the quantities used to find these ratios.

Thus, if quartz undergoes a second order phase transition, the
Landau theory predic.s that the scattered intensity very near the transi-
tior temperature would be ~10% greater than the scattered intensity at
room temperature.

Concurrently with Ginzburg's calculations, cn experiment was per-
formed which measured the relative changes in the light scattered by
quartz as a function of temperature. Yakovlev et al (35) illuminated a
plece of quartz with a mercury arc source and measured the scattered light
with a photomultiplier tube. They found that the relative increase in

scattered intensity was:

1(573°C)
(20°C)

~~

= 1.4 x 10%

"

Yakovlev photographed the scattering column at the transition temperature.
Thz scattering column had the appearance of a fog zone within the crystal,
not unlike that observed in a liquid vapor system undergoing a phase
transition near its critical point. The increase in light scattering

at the quartz transition was termed opalescence, analogous to the observa-

tions in a liquid-vapor transition.
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Thus, it appeared that quartz underwent a second order phase
transition near the Curie critical point and at the transition tempera-
ture the quartz crystal opalesced.

Ginzburg also emphasized the dynamical origin of .e "opalescence."
Taking as the order parameter n = y, the fluctuations in n will then
correspond to relative displacements of crystal sublattices so that n
is identified with one of the zone center optical phonons. On the basis
of available temperature-dependent spectroscopic information (21) Ginz-
burg identified n with the totally symmetric A; optic vibration, whose
room temperature frequency is 207 cm-}, Ginzburg proposed that as the
temperature is raised toward the transition temperature, Tt’ the fre-
quency of this mode should decrease steadily toward zero. The Stokes
and anti-Stokes components of the Raman spectrum would approach each
other, finally merging into a single quasi-elastic peak which would
continue to narrow and grow more intense due to the diverging fluctua-
tions.

It was this interpretation by Ginzburg which was the impetus for
our experiments. By spectral resolution of the scattered light we had
hoped to find the key to the observed opalescence and answer the chal-
lenge posed by Ginzburg (31), '"But why are there no experimental researches
on the spectrum of the scattered light near second order phase transition

points?"

- = s A ————
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CHAPTER II

RAMAN SCATTERING IN CRYSTALLINE QUARTZ

In this chapter we discuss the Ramdan scattering experiments per-
formed on quartz from helium temperatures up to 600°C. After a brief
review of the general theory cf the Raman scattering process, the Raman
selection rules for quartz will be discussed. Next, the early Raman
scattering experiments performed on quartz will be reviewed. Following
a description of our experimental apparatus, we presant the results of
our temperature dependent Raman scattering experiments. The chapter

concludes with a discussioa of these results.

A. CLASSICAL THEORY OF THE RAMAN EFFECT

The complete description of the Raman scattering process requires
a quantum mechanical theory (36, 37). However, to obtain the frequency
relations in the Raman effect we can treat the optical field and the
crystal classically (3s;.

Because of momentum conservezcion, in the first order Raman effect
only the modes at the center of the Brillouin zone (i.e. q®0) are
studied. Since, in nnrmal vibrations with q=) the atoms in all unit
cells vibrate in phase, it is sufficient to consider only the motion of
the atoms in one unit cell.

We consider a unit ceil with n atoms, with a polarizability a, and
with each atom connected to its nearest neighbor by a spring which

represents the electron cloud separating them. A plane monichromatic

i 2l

adbbhiad asdsl
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wave, Ezcos mot, is incident on the system and induces a dipole moment
because of the interaction of the electron cloud with the incident
electric field. Allowing for the tensor properties of the system, the

induced dipole moment in the i (x, y, or z) direction resulting from the

field polarized in the j direction is
P, = a,E, (11-1)

The displacement of the atoms in a unit cell from the equilibrium posi-

tion, {X—X;L can be written as a linear combination of the normal

coordinates Rk:
{x —x0}= IR, cos ot (11-2)
k

where Qk is the frequency of one of the 3n~-3 optic modes of vibration.

Expanding the polarizability about the equilibrium position {Xo},
a,, = o, (X } 4] (2—1-1) (R, ) (11-3)
ij i3 70" * L e Rk=0Rk

and substituting (II-2) and (II-3) into (II-1), the induced dipole moment

has the form:

o]

3y 3 RkE-
-~ © SRl -
P, uij{xo} chos wot+ Z(QRk )Rk:o——zl-[cos(uo + Qk)t + cos(wo Qk)t]
k :
(11-4>
The intensity of the scattered light is proportional to Pi?. The first

term in eq. (II-4) gives the light scatter=d at the incident frequency,
and the second term gives two components of the scattered light for each

normal vibration at frequencies:
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was= u)0"-Qk

called the St kes and anti-Stokes components, respectiveiy. From a
quantum mechanical point of view, the Stokes radiation results from the
~reation of a phonon and the anti-Stokes radiation results from anni-

hilation of a phonon.

1. Selection rules
The vibrational modes of the lattice can be studied in the Raman
effect only if they couple to the incident field. Considering only the

frequency shifted scattered light, we rewrite eq. (I1I-4)

- h k _

By & E oy Ej (11-5)
where

kb EY)

a =

157 2 3R R

R =0
and
Ejk = Ejo [cos (wo + Qk) t + cos (wo - Qk) t]

From symmetry considerations we can determine which modes may be Raman

active, i.e., aij 4 0 and which modes will be Raman inactive, i.e.,

k

- 2
aij £ 0 (1&).,

aa T
The fuctor (~—El- is evaluated at the equilibrium position of
the atoms and, therefore, is a numerical quantity which 1s a property of

the unit cell in its equiiibrium configuration and is invariant under all

symmetry operations of the group. Thus, under the operations of the




a0

group the factar {7;%%)R Rk trans.orms in the same way as the normal
k=0

coordinate Ry and the quantity will be non zero only if Ry tiansforms

in the same way as on2 of the polarizabiiity components. Since the

polarizability is a second rank teusor, the normal vibrations which

have the same transformation properties, i.e., the came irreducible

representatiors, as a second rank tensor wiil be Raman a-tive. A second

rank tensor transforms under the symmetry elements of the group in the

samc manner us the bilinear forms of the basis vactors x, y, and z

(i.e., x2, y2, z2, %y, Xz, yz). Since the character tables (Table I-1)

Lict the transformation properties of the various bilinzar forms, we

can immediately determine which species are Raman active.

If we represent the bilinear forms as a symmetric 3x3 matrix

x? Xy Xz
Xy y2 yz
Xz yz z2

we determine which Raman active species will be observed for a given
scattering geometry and a given polarization of the incident and scat-
tered light. These tensors, called the Raman or polarizability tensors,
have been tabulated for the Raman active species of the 32 crystal point
groups (37).

Table II-1 gives the polarizability tensors for alpha and beta
quartz. Below each matrix is listed the corresponding irreducible
representation of the normal vibration. An (x) or (y) occurring in
brackets after an irreducible representation indicates that the vibracion
is also infra~red active and the polarization of the mode has the direc-

tion indicated. From this table we sce that by -oupling to any off

s b . s S Tk SRR

- —




Table [I-1

Polarizability Tensors for Alpha and Beta Quartz

D3(32)

Alphia Quartz

Al E(X,Y)

D¢ (€22)

Beta Quartz
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diagonal component only E(Ej+E;) modes will be observed in alpha (beta)
quartz. By coupling to the zz component, only the Aj; modes will be

observed in alpha and beta quartz.

B. PAST EXPERIMENTS

It was in quartz that Raman scattering in solids was first discov~
ered (39). In 1928. Landsburg and Mandel'shtam, while searching for a
“fine etructure of the Rayleigh line" in quartz, observed lines whose
f-equency shifts were so large that they could not be termed fine struc-
ture. They were subsequently explained as Raman lines (referred to as
"Combination Lines" in the Russian literature) arising from normal
vibrations in a similar manner as the Raman lines observed in liquids by
C. V. Raman.

Subsequently, Krishnan in 1928 (40), Rasetti in 1932 (41) and
several others, mostly in Russia and India, have inves.igated the Raman
effect in quartz.

The group theory of alpha quartz shows that there should be 12 first
order Raman lines, eight of which are doubly degenerate. At room tempera-
ture as many as 41 distinct lines have been observed (42), the majority
of which were interpreted as second order Raman lines. While there was
accord in tiic assignment of the four A} lines, there was wide disagree-
ment in the assignment of the other observed lines.

The first study of the temperature dependencs of the Raman spectre
of quartz was performed in 1940 by Raman and Nedungadi who studied the
spectra from liquid air temperatures up to 530°C (43). They observed

that "the 220 cm™! line behaves in an exceptional way; spreading out
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greatly towards the exciting line and becoming a weak diffuse band as

the transition is aspproached." They inferred that the resulting deforma-
tions of the atcmic arrangements associated with this particular mode of
vibration are responsible for the changes in the properties of the
crystal.

Subsequent Raman studies in 1947 and 1948 by Narayanaswamy, who
investigated quartz from room temperature into the beta phase, revealced
that of all the fundamental vibrations of quartz, only the 207 cn~! 1ine
had an anomalous temperature dependence, its frequency shifting toward
zero frequency and its width broadening considerably as the transition
‘emperature was approached (23). Narayanaswamy reported no lines in the
beta phase carresponding to the 207 cm-1 line in the alpha phase. It was
on the basis of Narayanaswamy's experiments that Ginzburg proposed that
the 207 cm ! mode was the vibration associated with the orde= parameter.

The uost reliable pre-laser Raman study on alpha quartz was performed
in 1962 b; Zubov and Osipova, who vsed a Mercury arc source and photoelectric
recording (44). Twelve lines were observed and the four A} modes were
correctly identified. However, their assignmenis for the fundamertal
frequencies of the E vibrations disagree with the later experiments.

The first Raman study of alpha quartz using a laser as the exciting
source was reported oy Scott and Porto (45), who measured the frequencies

of the A} and E modes and .gave polarization assignments to the E modes.

C. APPARATUS
When one studies the spectra published in the literature cited above,

the existence of some lines is immediately questioned. Compared to present
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day Raman apparatus, the equipment used decades age was quite crude

and one is impressed by the perseverence of the pioneers in light scac-
tering. The exciting source was usually a mercury arc. The scattered
light was analyzed by a single grating or prism spectrometer, and the
detection was photographic which required dayvs of exposure time to obtain
a spectrum. The frequency shifts were measured from a microphotometer
tracing of the exposed and developed plate. Extrancous scattered light
in the spectrograph, ghosts and other emission lines of the exciting
source consistently complicated the s .ectra and increased the problems

of data reduction.

The present day Raman scattering apparatus consists of - .ser as
the exciting source, a tandem spectrograph to reduce the extraneous
scattered light inside the speetrogravh, a photomultiplier tube to
detect the scattered light, ard . photon ecounting system to analyze the
signal. With this system a spectrur is recorded in minutes, polarizaticn
studies can casily be made, and extraneous scattered light inside the
spectrograph is reduced.

The apparatus used for our Raman experiments is shown in Fig. II-1.
The early work was performed with a He-Ne gas laser (Spectra-Physics
Model 125) with an output of B0 mW at 6328 A. Most of the experiments,
however, were performed with an Argon Ion laser (Spectra-Physics Model
140) whose peak power at 4880 A was 800 mW. The laser light was focused
into the sample. Two mirrers were used to rotate the image of the scat-
tering column by 90° so that the imape was parallel to the slits of the
spectrometer. The scattered light was then focused onto *%: slivs of a

Spex (Model 1400) 3/4 meter tandem grating moriochrometer. The slit

b i UL
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Fig. I1-1, Apparatus used in Raman scattering experiments.
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widths used were 250 and 100 microns, which gave a resolution of 7.5 cm'1

and 3.0 cm'l, respectively.

The photomultiplier tube was an ITT Startracker (Model FW130) with
a rectangular (18 mm x 2 mm) S-20 photocathode surface. The small photo-
cathode results in a very low dark current, so that very weak signals may
be detected. The room temperature dark count rate of 250 cts/sec. was
reduced to 3-5 cts/sec. by coollng the tube.

Tne photomultiplier tube was followed by an emitter-follower, an
amplifier (Sturrup-Model 1415) and a single channel analyzer (Sturrup-
Model 1430) /hich discriminated against the pulses that did not originate
at the photocathode. The uniform output pulses of the analyzer were
counted and integrated by a ratemeter (Hamner-Model NR-10) and the signal
was recorded on a strip-chart recorder (l.eeds and Northrup Speedomax W).

The features in the spectrum #re measured in terms of wavelength,
converted to wavenumbers and then subtractad from the wavenumber of the
exciting line to give the Raman shifts in cm'l. For sharp lines, the
errov in the measured shifts is %2 cm-l. For broader lines, and those
close to the Rayleigh line, where the instrumental Rayleigh wings distort
the line shape, the error is ir reased due to the uncertainty in the
location of the line center.

A specially constructed, temperature regulated oven was used to
study quartz from room temperature up to 650°C; its construction and
performanice are described in Appendix B. For low temperature work, a
commercial Hofman Dewar was used t. study quartz at liquid nitrogen

temperatures (77°K) and close to liquid helium temperatures (20°K).




Two natural quartz and two synthetic quartz samples were studied,
the former being Brazilian quartz and supplied by Karl Lambrecat-

Crystal Optics and a private collector; and the latter were supplied by
Western Elect»ic Co. and Sawyer Research Corp. All samples were cut and
polished with faces perpendicular to the XYZ axes and were approximately
cubic in shape with eacl. edge about 12 mm. in length.

The crystal orientation for the Raman experiments was with the light
incident along X, scattered along Y, and Z perpendicular to the scattering
plane. By proper polarization >f the incident and scattered light we
were able to select, separately, the A; and the E (in beta quartz Ey + E;)
modes. Tor incident and scattered light polarized perpendicular to the
scattering plane (denoted VV or in the notation of Damen, Porto and Tell
(46) x(zz)y), we couple the light to the zz component of the polarizability
tensor (Table II-1) and only the A} modes are cbsewved. For vertically
polarized incident light and horizontally polarized scattered light
(VH or x(zx)y), or horizountally pclarized incident light and unanalyzed
scattered light (HT or x(yztyx)y) we couple the light to the off diagonal
components of the polarizability tensors and only the E modes (in beta

quartz E1+E;) are excited.

D. EXPERIMENTAL RESULTS

Figure II-2 shows the room temperature Ay} and E spectra for alpha
quartz which are in agreement with the first laser Raman spectra of
quartz observed by Scott and Porto (45). The measured frequencies are our
values, and the polariza:-lon assignments are those of Scott and Porto.

The important observations are the appearance of 5 lines in the A) spectrum
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Fig. 11-2. Room temperature Raman spectra of alpha quartz with
measured values of frequencies in cm™}, and Scott and Porto's (ref. 45)
polarization assignments (L=longitudinal, T=transverse). (a) The x(zz)y
spectrum showing the A} modes. (b) The x(yx+yz)y spectrum showing the E
modes. The arrows indicate intense A} modes being transmitted due to
non-ideal polarizers and imperfect alignment.
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instead of the 4 predicted by group theory. 1In the observed E spectrum
there are 12 lines instead of the 8 predicted by group theory. The origin
of the extra lines in the E spectrum has been satisfactorily explained as
due to a lifting of the dege.eracies ty long range electrostatic inter-
action. These observations will be discussed more fully in the next
section.

On cooling the crystal tc -250°C the Raman shifts changed very little
from the room temperature values. Figure II-3 shows the Aj spectra from
60 to 200 cm~! at three different temperatures: -250°C, -194°C and
-40°C. The sharp low frequency line is the 128 cm~! E line which is
transmitted due to imperfect alignment and non ideal polarizers. (The
spectral features will be named according to their room temperature fre-
quencies.) Note that the intensity of the 147 cm-! line decreases quite
rapidly as the temperature is decreased with little change in frequency
or linewidth.

Figure 1I-4 shows the A; spectrum at five different temperatures
above room temperature (the top trace is in the beta phase). The most
striking result is the rapid increase in the intensity of the weak
147 em™! 1ine and its corresponding decrease in frequency as the sample
approaches the transition temperature. The 147 em™! line is not present
in the beta phase. The 207 em~! line 1s seen to broaden and shift toward
lower frequencies, as reported by Narayanaswamy, but its frequency does
not reach zero and it is still present in the beta phase as a broad band
centersd at 162 cm-l. The temperature dependence of the frequency of the
147 and 207 cm~! lines is plotted in Fig. II-5. (We see that synthetic

quartz has the same frequency vs temperature behavicr as natural quartz.)
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-40 °C

=194 °C

-250°C

-200 -175 -I150 ~-125
Q2 (cm-')

Fig. II-3. The 100 to 200 cm-} portion of the x(zz)y Raman spectrum
showing the temperature dependence of the 147 cm~! feature.
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It is seen that the frequency of the 147 cm~lline does not go tc zero
continuously, but decreases to a value of 30 em~! and then suddenly dis-
appears from our spectra. On cooling, the line rcappears at a tempera-
ture 1°C lower then that at which it disappeared on heating.

The frequencies of the other A; linzs change very little with
temperature, Fig. II-6. The 466 cm=! line, which is very intense at room
temperature, broadens scmewhat with increasing temperature, but persists
through the transition having shifted to 459 cm~! in the beta phase.

This has been observed in earlier experiments. The 355 en! and 1081 cmm?
lines, which become B; Raman inactive modes in the beta phase, decrease
in intensity with increasing temperature and are not present in the beta
phase. Fig. II-7 is a plot of the intensity of the 355 cm-l 1line vs
temperature.

A plot of the measured linewidths of the 147 cm~!, the 207 cem™!,
and the 467 cm-}! lines is shown in Fig. II-8. The 147 cm~!and 207 cm~!
lines are already broad at room temperature and continue to broaden as
the temperature is raised. There are large errors in these measurements
especially at temperaturcs above 200°C where the determination of the
zero intensity level 1s not possible due . > the large amount of second
order scattering being excited, and overlapping spectral lines.

Summarizing the obscrvations on the A; lines, there appear to be
five A} modes in the alpha phase (Fig. II-2, II-3, and II-4) and two
mo¢ 8 in the beta phase (Fig. II-4). However, group theory predicts that
there should only be four A] modes in the alpha phase, and at the transi-
tion three of the ‘our A} modes become Raman inactive B; modes, while only
one of the four will be present in the beta phase as a Raman active A;

mode (Table I-3).
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The E modes show little temperature dependence. The lowest frequency
E mode which has the strongest temperature dependence of the E modes
shifts from its room temperature frequency of 128 em™! to 96 em~l. There
has been wide interest in this mode since it is the loweat frequency
transverse optical vibration. Attempts have been made to observe polaritonms
associated with this mode (47, 48). Also, this is the first infrared
active vibration in a crystal to be observed in stimulated Raman scatter-
ing (49). Table 1I-2 correlates the E lines observed at room temperature
with those observed in the beta phase. In the beta phase the Ej+E2 lines
have broadened and some splittings which were observed at room temperature

are no longer seen at high temperatures.

E. DISCUSBION
1. E Spectrum

In the E spectrum of alpha quartz (Fig. II-1) there are 12 observed
lines instead of the 8 doubly degenerate lines predicted by group theory.
The explanation of the additional lines is that the E modes are also
{nfra-red active so that there is a dipole moment associated with these
vibratinons which zives rise to a long range electric field which 1lilts
some of the long wavelength phonon degeneracies.

The lifting of the degeneracies is closely related to the LST rela-
tion derived for a single optic vibration in ionic crystals (50). Loudon
predicted a lifting of a degeneracy for uniaxial crystals (37), and
Scott and Porto applied the theory to quartz (45). Born and Huang discuss

the macroscopic equations governing the lattice modes in a solid (51):
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Table II-2
Frequencies of E Modes in Alpha Quartz and

E; +E; Modes in Beta Quartz

Alpha Quartz Beta Quartz
E Modes Ei14E72 Modes
-25°C 525°C 585°C
128 (L+T) cm-! 110 cm-! 96 cm~}
‘ 264 (L+T) 252 249
{ 394 (T) 398 399
403 (L)
452 (T) 440 414
508 (L) 502 494
698 (T+L) 686 684
798 (T) 785 792
811 (L) 797

1067 (T) 1063 1667
1233 (L) 1224 1228
1161 {T+L) 1165 1149
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R = -s1k-°-'§k+zk'€ (11-6)
Po- Jzk +at _
klekRk +a (11-7)

where ﬁk is proportional to the relative displacements of the atoms in
the kth vibrational mode; Zk is the effective charge density for the kth
mode; P is the electric polarization, a_ 1s the electronic polarizability
und ; is the macroscopic field defined in Maxwell's equatioms. ka is
proportional to the restoring force for the kth mode which includes, in
addition to the short range interatomic forces, the Lorentz field contri-
bution to the effective field at an atom (5). The sum is over the m
infrared active vibrational modes.

letting E, P and ik all be plane waves proportional to ei(wt-q-r) we

can snlve (11-6) for Rk

- ->
Rk = 72 E (11-8)

and substituting into eq. (I1I-7)

_ m 22 o,
Bo=la + ) =— |E (11-9)
S T

From the definition of the electric displacement

D = e(WE = E + 4vP (11-10)

and substituting eq. (II-9) into eq. (I1-10)

m Zkz
clw) = l+4ﬂ0°°+411'2 PR
k=1 k =
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5"
e@) = (=) + ) ——s (1I-11)
k Y w
where we defined the high frequency dielectric constant:
e(®) = 1+ 4ma (11-12)
and the mode strength for an infrarzd oscillation:
4n2, 2
S = —Z"f (11-13)
f
k
The Sk determine the value of the static dielectric constant:
e(@) = e(=) +] 8§ (11-11")

k
If we restrict ourselves to lattice waves having a phase velocity uuch
less than the velocity of light in the crystal we can neglect any retarda-

tion effects and Maxwell's equation for the macroscopic field are:

9D = Ve (E+ 4mP) = O (I1-14)

UxE = 0. (1I-15)
From eq. (1I-14)

V-E = -4m0-P (11«16)

and substituting eq. (iI-7) into eq. (II-16) and using eq. (II-12)

- -4y T =
0. = v -
E ~ 7oy kzlzk R, (11-17)

With eqs. (II-6) and (II-7) we can solve for the macroscopic field, E.
We split Rk into its transverse and longitudinal components, ﬁk' ﬁkL+ ﬁkT

and treat each case separately.
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CASE I: 1f R_is transverse, ﬁk = ﬁkT and

v’ﬁk =0

R, t 0

From eq. (II-7) we see VE = 0; and :rom Maxwell's equation (II-15),
VxE = 0. Thus in a transverse optic (TO) mode, E = 0. In the equaticn
of motion (eq. 1I-6) the second term on the right is zero and the fre-

quency of the transverse modes are the Qk's of eq. (II-6):

2 m 2
Rt ™ %
From eq. (II-7) we see that there is a polarization even though E = 0.
Since P = (%ﬁ%} E (eq. II-14) in order for P +0asE~+0, ¢ has to

approach «», Thus, in terms of the dielectric constant, the frequencies

of the TO phonons are the poles of e¢(w) (eq. II-11).

CASE II: If ﬁk 1s longitudinal, ﬁk - ﬁkL, and

Vka =
V'R, $0

From the latter cquation and eq. (II-17):

>

E = e(w) L zkﬁk (11-18)

Putting this into eq. (II-6):
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Reront By - oy o Lo R (1119,

Removing the kth term from the sum and rewriting,
S 2 4 2 4 u -+
R o= -2+ ORI L.kkzkzk-kk, (11-20)

From eq. (II-20) we see that the ik's are no longer dynamically independent
and that the frequency of the kth longitudinal optic (LO) phonon differs

from the frequency cf the TO phonon.

If we consider the special case where there is only one mode there is no

sum in eq. 1I-20, and

2 g
itk - _l:n + (,)] (11-21)
The frequency of the kth LO mode is:

T = nkT‘“LZL

T ) (11-22)

Since all the factors are positive in the second term én the right, we
see that the frequency of the LO phonon is greater than the frequency of

the TO phonon.

From the Jefinition of the strength of the mode (eq. II-13), eq.

(II-22) becomes:

L= % [1 + ;%] (11-23)

and from eq. (II-11')

kL e (o)
2% o
BT cO

which is the LST relation for a single optic mode (50).

(11-24)
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Returning to the general case with m vibrational modes, from
eq. (I1I-18), £ 18 non -ero and eq. (II-16) implies:
T o= -4yP (11-25)

and thus D = 0 for an LO phonon. From the definition of the frornency
dependent dielectric constant (eq. II-10) we see that for the LO phomon,
e{w) = 0. Thus the frequencies of the LO phonons are the zero's of the

dielectric constant. From eq. (II-11):

sk’nk‘z
0O = e(m) + 2.9—2——2 (11-26)
LS S

If the TO modes are well separated from one another, so that in

eq. (1I-26), |Qk%T-Qkil>>l for k‘+k, only the kth term will cont.ibute

significantly to the sum and eq. (I1I-26) becomes the LST relation, 2q.(II-24).
If this approximation cannot be made, the sum in eq.(II-26) has to be

performed and one iinds a more complicated expression for the LST rel.tion

(52,53): )
m
kL € (o)
n =5 = (11-27)
k=1 T e(=)

In summary, we have shown that the long range electrostatic inter-
action will rumove the degeneracies of the E vibrations and that the
frequencies of the longitudinal modes (the zero's of the dielectric constant)
are greater then the frequencies of the corresponding transverse modes
(the poles of the dielectric constant).

Scott and Porto (4°) calculated the frequencies of the LO phonons for

the E vibrations by using eq.(II-26), their measured values of Qﬁ% and the
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mode strengths, Sk’ from Spitzer and Kleinman (54). Their measuvred LO
frequencies agreed, within experimental error, with our measured values.

In Fig. II-2 and Table II-2 we see that the splitting of the 128,
265, 697 and 1172 cm~! lines is not resolved. The reason for this can be
seen in eq. (II-23), where it is shown that the frequency difference be-
tween the LU and TO phonons itf proportional to the infrared strength of
the vibrations. The strengths of the 128, 265, 697 end 1172 em-1 vibra-
tions is small compared to the other infrared active vibrations (54).
Atterpts to resolve the LO-IC splitting of the 128 em~l ii:e were made at
low temperctures but with no success (55). However. the spltting did

manifest itself as an observed brecadening.

2. Aj Spectrum ¢

Another striking feature in the Raman snectrum of quartz is the
2ppearance of 5 lines of A; symmetcy in the aipha phase instead of the
4 A; lines presicted by zroup theory. In addition to this apparent dis-
agreement with group theory below the transition temperature, there appears
to be a contradiction with group theory above the transition temperature
where two lines are present in the Aj spectrum of the beta phase and
group theory predicts only one.

The number of vibrations of each species is calculated by group
theory on the basis of the space symmetry cf the solid and the position
of thc atoms in the unit cell. The symmetry of alpha quartz has been
well established for decades (1, 2) and the symmetry of beta quartz also
seems beyond dispute (1, 2). Thus, since ft is unlikely that the symmectry
determination of the different phases of quartz is incorrect, another
explanation for the discrepancy between the group theory and experiments

is sought.
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Originally (56) the 147 cm~! was thoughtto be the result ¢t 4 second
arder Raman scactering process. However, this explanation seemed unlikely
beca -~ the striking temperature dependence of the frequencv of the
147 cm - line (Figs. II-4 and 11-5) indicated that it plays a fundameatal
role in the phase transition. The second order assignment would not, in
ar case, resolve the difficulty in the beta phase arising from the per-
sistence of both the 466 and 207 cm~! lines. An ad hoc model which
explained the basic temperature dependent results was proposed by Shapiro,
0'Shea and Cummins (22):

As we have seen, the silicon ions in the beta phase are
located at hexagonal sites with the oxygens halfway between neighboring
silicons. 1In the alpha phase the silicons are displz-ed in one of two
directions along a twofold symmetry axis and che oxygens also move to one
side of their beta phase sites. All the ions move in double minimum
potentials centered around their beta phase sites. The doutle wells are
strongly asymmetric due to the cooperative interaction in the (ordered)
alpha phase so that all the ions tend to be on the same sicde of their
double well. The two possible arrangements, depending on which side of
the well has the lower energy, constitute the electrical or Dauphiné
twins of quuartz (20).

Although it is usually assumed that in an untwinned crystal all unit
cells have the same configuration, any one cell hzs a finite probability
of being in the unfavorable (higher potential minimum) configuration
which 18 propocrtionel to the appropriate Boltzmann factor. Thus, assum-
ing the quadratic terms of the local potential to be different at the two
sites, the strong normal oscillation at 207 cm~! would be accompaniad by

a weaker satellite at a different frequency. As the temperature is




increased the energy difference between the two o>nfigurations decreases
and the intensity of the satellite line would increase, approaching that
of the parent line. If, in addition, the height of the barrier decreases
faster than the energy differences between the two minima, it would be the
satellite whose frequency would decrease steadily towards O as the transi-
tion is approached.

In order to explain the persist~nce of the "forbidden' A, mode in
the bela phase, one might ascribe a dissymmetry to the local-potential
minimum. Extensive x-ray measuremnents show that a double-minimum configu-
ration with random occupation (appropriate to an order-disorder transition)
in the beta phase is highly unlikely (20). Nonetheless, a small residual
dissymetry cannot be ruied out and could account for the extra A; mode
observed in the beta phase.

Another model recently proposed by Senct (57) explains the unusual

temperature dependence and selection rules exhibited by the 147 cm-!

and
2C7 cm~! Raman features as due to the coupling between one and two phonon
excitations. The 207 cm-! 1ine is essentially a zone center Aj optic
vibration while the feature at 147 cm—)is a second orde: Ramsn line which
is the result 6f the creatior of two zone 2dge acoustic phonons with equal
and opposite wavevectors. The arguments given by 3cott for the second
order nature of the 147 cm-! line are the appearance of his spectra at
low temperature and the peak at 70%5 cm~! observed in neutron scattering
experiments on polycrystalline quartz.

As the temperature is raised, the two excitations become mixed due
to the coupling produced by the anharmonicity. Around 330°C the excita-

tions are thoroughly mixed and the observed spectral features can no

longer be described as one or two phonon processes. As T ~+ Tt’ the
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excitations again uvecome distinct, and the low frequency component hus
become the one-phonon mode and the higher frequency line is the two phonon
excitation. Thus apart from the complications produced by the mixing, the
earlier assertion that the frequency of the 207 cn™} mode approaches zero
as the transition temperature is approached 1s apparently correct, Above
Tt the observed feature at 165 cm~! is essentially second order (q % 0)
and hence Joes not violate group theory whose calculations are for q = 0.
The soft optic mode is expected to harden for T - Tt’ but it is a Raman
and infrared inactive B} vibration. Early attempts to detect it by neu-
tron scattering experiments have been unsu~ccessful (58). However, recent
neutron diffraction experiments have detected the soft mode in the beta
phase (59).

Fig. 1I-9 18 a log-lcg plot of the messured frequency of the 2C7 cm~!

and the 147 cm’1

lines vs AT = T -T where T 1is taken as 846°K (=573°7).
The dotted lines show the temperature behavior of the soft, zone center
Raman lire and the second order Raman line in the harmonic approximation,
i.e., if there were no aniharmonic coupling. The uncoupled behavior of the
goft phonon was deduced from the fact that at very low temperatures,

Tt-T = 826°K, and at high temperatures, Tt-T = 1°K, the coupling between
the zone center and the zone edge phonons is small. A: the low tempera-
ture, the higher frequency line (220 em=?) is the G = 0 zone center optic
phonon and the lcwer frequency line (160 cm™') 1s the second order Raman
line resulting from the creation of the two acoustic phonons with opposite
momenta. At the high temperatures, the higher frequency iiune is the second
order Raran line and the lower frequency line is the soft optic phonon.

The slope of the line connecting the frequency of the soft phonon at low

temperatures with the value at the high temperature gives the temperature

behavior of the frequency of the uncoupled soft phonon:
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Q alr -1 |7
’ t

where A 41 5 emml/(C°K)T
v = ,25 % ,05

Tre frequency of the uncoupled second order Raman line is assumed to be
temperature independent and is taken as the value at Tt—T = 326°X: 160 cr~l.

Comparison of the observed frequenclies with the uncoupled frequencies
shows the characteristic level repulsion behavior predicted in other
temperature dependent systems with coupled modes such as BaTiO3 (60) and
KOP (61).

We can derive a relation to fit the observed data. In Chapter I we
discussed iLhe harmonic approximation of a crystal system and showed that
in the harmonic approximation the total Hamiltonian can be written as the

sum of individual simple harmonic oscillator Hamiltonians. Considering
only the soft mode and the twec acoustic modes, the partial Hamilvonian, H
can be wr “ten as
H = H + H; + H;’+ W

where Ho is the Hamiltcnian for the uncoupled zone center optic mode,
H; and H;’are the Hamiltonians for the two uncoupled zone edge acoustic
phonons with equal and oprosite momenta,and W is the anharmonic contribu-
tion which couples the soft mode with the ‘wo zone e”ze phonons and
enables energy to be transferred between the zone center and the zone
edge phonons. The Hamiltonian, H, depends on temperature since Ho is
temperature dependent and W may also have a temperature dependence, although
H; and H;’ are assumed to be temperature independent.

If the normal coordinate of the ccupled system, Q, is a linear com-
bination of the uncoupled coordinates, Qo’ Q; an. Q;‘J we write (in

matrix form)
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(11-28)
Q.-

vherc Qo’ Q; and Q;‘are the eigenvectors of the uncoupled Schrodinger

equations:
HoQo - QoQo a
H;Q; = Q;Q; b (II-29)
A s

and Qo, Q; and Q;‘ are the normal frequencies of the optic and the two
acoustic phonon: at a giver temperature. If we utilize the assumption
that the two acoustic phonons are equal, but with opposite momenta, we

can write:

‘ Q)*= q,”

[
Le]
v
N

This implies that H” = H ”"and Q~
a a a

If we write

Eq. II-29 b and ¢ can be comblined:

HaQa = QaQ (II-30)

a



82

The Schrodinger equation for the coupled system is:

HQ = ©Q
withi=H +H + W, or
o a

1

How | [q [Q .
o o o
= Q| (I1-31)

g Ha Qa [Qa}

To find the eigenvalues of the comnpled system we solve the secular equa-

tion:

lH-0ilq = 0 (11-32)
and we obtain:
() = D Q +0 2 -9)% + 4w2]1/2} (11-33)
- 2 o a o a

where Qo is the frequency of the soft phonon line and na is the frequency
of the second order Raman line in the uncoupled system.

In order to fit the observed data it 1s necessary to select the
proper temperature dependence for the anhaimonic coupling parameter W2.
Scott let W2 be proportional to the experimental linewidth of the more
intense line of the two spectral features.

We tried various forms for W? in order to obtain a good fit with the
experimental curve. In Fig. II-9 the circles (®) represent a plot of
eq. (II-33) vs temperature with a constant coupling parameter W2 ev-luated
at the crossover point for the uncoupled modes (Qo = Qa = 160 cm-l). It
is seen that the fit is quite good for small Tt - T, but for large Tt - T
(low temperatures) the calculated points lie beyond experimental error.

Thus a constant W2 is unacceptable.
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£llowing W? to vary linearly with temperature yielded the best
fit of eq. (I1-33) with our experimental data (the crosses (+) in
Fig. II-9). The use of a linear temperature dependence for the anhar-
monic coupling parameter is consistent with recent calculations of the
many body Green's function of an anhar onic crystal (62, 63). In this
formalism the harmonic frequency QH ils replaced by a renormalized

frequency Q,
2 . g2 .
Q Z + 22D (I7-34)

where D is the contribution nf the self energy of the phonon to the
frequency. Detailed expressions for the self energy factor D have been
evaluated in the lowest order by Maradudin and Fein (6.,, D is a com-

plex frequency and can be written as
D = A -1T (1I-35)

where A 18 the frequency shift due to the anharmonicity and T is the
reciprocal lifetime of the phonon state.

The temperature dependence of D is due to the occupation number
bf# 1
n= [; ®Y T {] , 8ince the complete expression for eq. (II-35) shows

D to be proportional to n (62, 63). In the high temperature limit,

kr >> hnu, and thus

Dvnn éﬁ_.
H

The self energy contribution to the harmonic frequ:ncy, D, includes the
anharmonic terms c¢f ti : total hamiltonian. If we identify the quantity

2ﬂHD in eq. (II-34) with ¥ of eq. (II-33), wa see that
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- T
2
W '\»QHD'\'QHn'\'QH(?ZH)ﬁT

Thus the coupling parameter, W2 is proportional to T. This linear
temperature approximation is the same as Scott used since the width of
the gpectral lines also appears to be a linear function of temperature
far f:.om T, (Fig. II-8).

The above discussion, though lacking in rigor, does yield a con-
vincing argument for a linear temperature dependence for the anhar-
monicity. This type of approach has been used by Cowley in the study
of ferroelectricity and the phase transition in SrTi0, (64). 1In
Cowley's thaory the temperature dependence of the soft -~rmal mode
arices from the anharmonic interaction between the normal modes of the
crystal. If, in eq. (II-34), the square of the harmonic frequency is
negative and written as —KTt. and the quantity ZQHD 1s written as KT,

eq. (11‘34) becomes
2 = =
f K(T Tt)

which is just the temperarure dependence of the soft mode of a ferro-
electric crystal derived by Cochran, who considered the temperature
dependence of the soft mode as arising from a change in the potential
{unction with temperature (65).

Additional evidence that Scott (57) used to support the second
order nature of the 147 cm~! line is that his low temperature spectrum
(100°K) shows several broad, asymmetric maxima in the 147 cm~l regicn,
We have observed the low temperature Raman scattering in the low

frequency region of the Ap spectium (Fig. II-3) and our spectra difier
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appreciably from Scott's., We see the strong 207 cm-! line, the broad
147 cm~! line and, also, a small part of the 128 cm~! E line which is
transmitted due to non-ideal polarizers. The several maxima Scott saw
in the 47 cm~) feature were not observed in our spectra. However, the
second crder nature cf the 147 cm~! excitation manifests itself in the
T dependence of its inten-ity. In first order Raman scattering cne
phonon is created (Stokes line) and the intensity of the line is pro-
portional to (n;+1) Eq_- (ehnlﬂ‘:'r-l)-1 where @, is the frequency near
the center of tLe Brillouin zoneﬂ. In second order Raman scattering
two phonons with equal frequency and opposite momenta are created (over-
tone Stokes line) and the intensity is proportional to (nj,+1)2
[@2 = (ehQZ/kT-l)-l where Q, is the frequency of one of the phonons
involve{] (37). In quartz, the second order Raman line is due to tne
creation of two zone edge acoustic phonons (57). A plot of {nj+l) and
(n,+1)2 vs temperature (Fig. II-10) shows that in the 150 em~1 frequency
region a second order Raman line {22, = 150 cm™1) has a stronger tempera-
ture dependence than a first order Raman line (9; = 150 cm-l). Our
spectra show this qualitative behavior if we compare the intensity of
the 128 cm-! first order E line with the 147 cm~! line in Fig. II-3.
Thus we conclude that the 147 cm~! line is a second order Raman
line and that the anharmonic coupling between the zone center and two
zone edge phonons contributes to the anomalous temperature dependence
of the frequency and intensity of the 147 cm™! and the 207 cm~! lines.
The 207 cm~! line 1s the "sof:" mode, as predicted, but its nature is

complicated by the coupling.
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CHAPTER IIIX
BRILLOUIN SCATTERING IN CRYSTALLINE QUARTZ

In this chapter we discuss the Brillouin scat‘ering experiments
performed on crystalline quartz from room temperatuie up to 600°C. We
begin withadliscussion of Brillouin scattering in snlids and then d4scuss
the elastic and photoelastic behavior of solids. Next we review tu.
early Brillouin experiments performed on quartz. Following the descrip-
tion of the apparatus, the results of the present Brillouin experiments
will be presented. The elastic constants calculated from the Brillouin
shifts will be compared with the elastic constants meas.red by ultra-

scaic techniques.

A. THEORY
As discussed in Chapter I, {luctuations in the dielectric coustant
of a material cause light to he scattered. Since these fluctuations in
the dielectric comstrant srise from the atomic wotions of the system, we
can expand the fluctuaticns in terms of the normal ccordinates of the
solid:
3n 3¢

= ——!i -
Bey, kzl Ey R, (I111-1)

where the translational symmetry of the crystal has been used to reduce

the sum to 3n terms (n is the number of atoms within a unit cell), The

above sum can be brolien up intc two sums:
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88
9€
3 3¢ 3u 13
pey = ) =R+ Y ° II1I-2
ij k=1 BRka Rk omt aRkO Rk ( )

where the first sum corresponds to the 3 acoustic modes with a given
mom .ntum and the second sum ccrresponds to the 3n-3 opti. modes of vibra- +
tion.
Ia the preceding chapter we discussed the optic modes of vibration
at ¢ * 0 which were studied by Raman scatte:ing. In this chapter we deal
with light scattering from acoustic modes, which for q ¥ 10° cm~! are 100
times lower in frequency than the optic modes. The phencmenon of light
scattering from acoustic .- ies is called Brillouin ecattering after
L. Brillovin who, in 1922, predicted that light should be inelastically
scattered by sound waves in a transparent medium (66).
The theory of Brillouin scattering in solids has been adequately
discussed in several papers (67, 68, 69, 70). We will not repeat any
derivations but will draw upon the references for the necessary relation-
ships.
In light scattering experiments, momentum conservation restricts
q = 105 cm~! near the center of the Brillouin zone. From the dispersion
curve for the acoustic modes (Fig. I-3) we see that in this regien, fﬁf
is proportional to q. The proportionality constant is the velocity cf

sound in the medium:

ﬂk * nd (k=1,2,3) (I11-3)

From momentum conservation:

T -¢ (111-4)
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where ki is the wavevector, in the solid, of the incident light and
k8 is the wavevector, in the solid, of the scattered light. Thus the
scattering geometry selects the direction of a particular q and, since
the frequency of sound is much less than the frequency of light,

{kii = Iksl, the magnitude of q is:

i 0
IQI = zlkil sin 2

]
o > sin 3 (I1I-5)

where 9 is the scattering angle, Ao is the wava2length of light ia vacvum
and n 18 the index of refraction of the medium (birefringence has been

neglected). Thus the frequencies of the phonons excited in light scat-

tering experiments are

a 4mn ]
ﬂk = Vk T‘ sin i (k'1,2,3)

[o]
\
vk e (III-G 7
Zmo = sin 3

where w is the frequency of the incident light. Fig. 11I-1 shows the
scattering arrangement for light scattered at angle 6.

In a solid, for a given ¢, there exist three acoustic modes: one
longitudinal (L) or quasi-longitudinal (QL), and two transverse (T) or
quasi-transverse (QT). 1Tnese three modes may all have distinct frequencies,
or some may be degenerate. A Brillouin spectrum will, in general, con-

tain three down-shifted, Stokes lines (phonons created) at frequencies:

mks = g -9 °

2 ‘v'k 9 —
o . mo[l “ K n sin 5 ] (k=1,2,3)

c
(111-7)




90

/6 a1s 7 = |b|

s T .
.Amx_ = _ﬁm; aouyg -uonoyd 3yl JO 103O3A3ABM Y BT P - Y = W (sTdures 3yl ur
“

S

poinsesw yjoq) Weaq PaIaIIEdS Yl JO 103JaA3AEA 343 ST A pue weaq JUSPTOUT IYI JO 103ID3A

P

-aAEM 3Y] ST Hx *gsjuswiladxs Buriasiieds u:waHHOuahu@SONwwcﬂuwuumum.HlHHH .w“h
<

a|dwog




-

and thoce upshifted, anti-Stokes lines (phonons annihilated) at fre-

quancies:
as - a a 2vk )
W T ugtm T el Zasing] (k=1,2,3) (111-8)

A typical room temperature quartz Brillouin spectrum is shown in
Fig. III-2. Here q is along the [110] direction of the quartz crystal.
We see that none of the modes are degenerate and that the frequency
shifts are less than 1 cm™l.

In the Brillouin experiments, the frequency shifts, Qka, and the

angle are measured; whence the sound velocity can be computed by

eq.(I1I-6). The velocity of sound, in turn, is related to the elastic
properties of the medium. Thus by means of Brillouin scattering we are
able to study the behavior of the elastic properties of the solid at a

higher frequency than conventional ultrasonic techniques (v 1010 yg

2106 Hz.).

1. Elastic Properties of Solids

|
can be derived by considering the crystal as an elastic continuum and l
applying the classical theory of elasticity (71, 72). The generalized t

Hooke's law relating the stress and strain tensors is:

X3 = Sy Ma (111-9)

where xij is the stress, X1 is8 the strain and Cijkl

stiffness constants (summacion over repeated indices is implied). There

l

|

ﬂ The properties of the long wavelength acoustic modes of a crystal
|

I

|

I

‘ are the elastic
|

|

|

is an additivnal contribution to the stress from the piezoelectricity:
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'eijE‘ (where eij is ~he piezoelectric coefficient) but in quartz this
J
contributes < 1% to the velocites and is dropped in these calculations.

If we utilize the symmetry properties of the elastic constants (9):

Coge1 ™ Cya1 ™ Gy ™ Ckage

and use the reduced notation (see Chapter I, p. 15 or Reference 9) we

rewrite eq.(III-9) in the reduced notation:
X = C X (I11-10)

(the subscripts 1,j,k,1 take on values from 1 tc 3; and the subscripts
m,n,p,r take on values from 1 to 6). For each crystal system, the elastic
constants Cnm are restricted by symmetry and some vanish identically.
Appendix A gives the measured values of the elastic constants for alpha
and beta quartz and displays them in matrix form.

The components of the symmetrized strain are related to the particle
displacement ﬁ(;), by

u; Qv

- 1Ly
ij 2 3rj ari

X (I1I-11)

The ejuations of motion of an elastic body with a mean density ,, are

given by:
axil

and from the definition of the stress (eq. ITI-9), and using the unsym~

metrized strain we have:

(I11-13)
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We look for plane wave solutions of the form,

u@E, 6 = e (T - 88 (I111-14)
Substituting into the equation of motion (eq. III-12),
[c q, q4, - 026,18 = 0 (I1I-15)
1jke U 9 Jk* ¥k
Letting ak be the k" component of the unit vector §,.and
putting 92/q2 = vZ, we have the following secul:r equation:
A -~ - 2 - - ,
lcijkl q; 9, - PV ijl 0 (I11-15)

For a particular value of q there are three real positive roots of

eq. (I1I-16):
2 = 2 -
oV, cy (111I-17)

where CJ is proportional to a combination of elastic constants. Once the
eigenvailues are found the direction cosines of the displacement vector
(a,B8,7) can be calculated.

If the elastic constants are known, the velocities and the displace-
ment divection cosinzs of different phonons can be computed. Conversely,
if the velociti2s are measured, we can calculate the eiastic constants.
For quartz the elastic constants at room temperature have been measured
by ultrasonic techniques. Table III-la-b give for alpha and beta quartz

the roots of eq.(III-16), the computed velocities and the particle dis-

placement direction cz3ines (a,3,y) for four values of ¢: [100], {010},

{001], and [110] (73).
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In Brillouiu scattering the acoustic modes couple to the light
through the modulation of the dielectric constant by the strain waves
that are thermally excited in the crystal. This elasto-optic or photo-
elastic phenomenon is called the Pockel's effect and is described

mathematically by (9):

Ae = -€.€

1j 1%5 Pijre *xe (111-18)

where gy is one of rhe three principal values of the dielectric temsor

and the P are the Pockel's (or elasto-optic or

13k2 ™ Byire * Prgax
photo-elastic) coefficients. Since the intensity of the scattered 1light
is proportional to the mean square of the fluctuations in the dielectric
constant, the intensity of the scattered light will be proportional to
the square of the Pockel's coefficients. For each crystal system, the
Pockel's coefficients are restricted by symmetry and some vanish
identically. These coefficients can be written in reduced notation and
put in a 6 x 6 matrix fcrm. In general, the matrices of the Pockel's
coefficients are not symmetric, i.e., Pon + P 9).

The symmetrized strain (eq. III-11) for a plane wave solution of

eq. (III-13), is:

1(3-% - atr)

1 ga o o o~ - : <
g, = b, + 6,80 IRiE] e (111-19)

from eq. 'III-18), the fluctuations of the dielectric constant about the

mean, using ey. (III-19) is:

- - 1 ~” A - A + 0+ 1(q-T - Qt) -
Aeij eiejf{Pijkl(ukql + ulqk)}lul‘ql e (II1-20)
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Hence the intensity of the scattered light 1is proportional to

2 .1l.2. 2 S e 40 aniEl? -
I odef, = ge,’ey {Pijkl(ukqi + 1,4 Mgl (11I-21)

where the mean square Fourier strain component |uq|? is given by

thermodynamic fluctuation theory (19):

kT

2 =
|qu| g;;;r

1f we write the intensity of the light scattered by mode a, in
terms of the Rayleigh ratio (33) defined as the scattered intensity
polarized in the ﬁj direction, per unit volume per unit solid angle per
unit incident intensity polarized In thec Ei direction (E, and E, are

3 i

unit vectors), we have

2
a T 2 0 s 12
Ryj z;kT[Ej-? E] (111-22)
where
. a
T = eiej Tij
By dy + g
a _ (uk L £ 'k _
Ty & Pigl ” ) (111-23)
These T;;'s determine the selection rules and once they are calculated

we can determine which modes will be observed for a given q and a given
choice of the polarization of the incident and scattered radiation. If
the elastic problem is solved for a particular choice of q we caa find

the components of the strain. In six component forms the strain is (9):
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T
X} q1H1 1
X2 Ga2¥2
>3 = q3¥3 I11-24
Xy (q2u3 + q3uz) ¢ )
X5 (qius + q3uy)

| X6 | (quu2 + q2uy)

for alpha quartz, symmetry Dj, certain Pockel's coefficients vanish. The

components of T for any acoustic mode of alpha quartz using eq.(III-23) are

T P11 P12 Py3 P1y O 0| -_QIUI -
Ty P12 P13 Py3 Py 0 O Q22
T3 | . | P31 P33 P3 0 O O Q343
Ty Py Py; O Pyy O 0 (qau3 + q3u3) GRREY
Ts 0 0 0 0 Py, Py (q1u3 + q3u1)
_TG_ _0 0 0 0 P1y PG.G_ _(qluz + ‘I21—¢}2_

The calculation of the T mnatrix involves carrying out the matrix
multiplication above. Table III-2 gives the T matrices, the velocities
and direction cosines of the phonons propagating in the [100], [010],
[001] and [110] directions. Also shown are the components of the T
matrix studied for various choices of the polarization of the incident
light and scattered light (V = light polarized perpendicular to the
scattering plane, H = light polarized in the scattering plane).

If the Pockel's coefficients are known, from the T matrices we can
predict the infensity of the Brillouin components. Conversely, from the
intensity of the Brillouin components we can measure the Pockel's coeffi-
cients. The Pockel's coefficients for most crystals are not known (75).
For alpha quartz, the Pockel's coefficients have been measured but the

re.sults are over 6U years old (76)! These values are given in Appendix A.
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Table II1I-2&
q = ({100}
Pjja Piyy + PggB  Puyy + Py, B
T Piyy + PggB Ti2a Py1a
Pyyy + P18 Pyia Pj;a
L T, T
pv? 86.9x101%dynes/cm?  69.3x101%dynes/cm?  28.8x10*Ydynes/cm?
a 1 0 0
B 0 -152 -085
Y 0 -.85 .52
+ 4 -+
For K, = 2 (110} and kK = 2 (11 0]
: 2 8 v
or K, = 2(110] and ¥ = 111 0]
i s /7

Polarization Choice

\'AY

£

Observed Components

Ty32

(T31 + T3207
(Ty3 - T32)?

(Tyy - Typ)?2




Table III-2b

q = [010]
—P125 + Pryy Pgga Py a
T: Pgea P118 = Piyy =Py1B8 + Pyyy
Pya =Py18 + Pyyy P38
L T, T
ov2 95.57x10!0 49.48x1010 39.89x10!0
dynes/cm? dynes/cm? dynes/cm?
a 0 0 1
8 -.90 -.43 0
Y +.43 - .9 0
For iIi 5 & [i I 0] and k = & [1 1 0]
2 2
or Ei = é[IIO] and k = —l-[IIO]
/2 2
Polarization Choices Observed Components
vV Ty3?
VH (V31 = T32)?
RV (T3 + T3y)2
HH (T1) = T22)?
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Table I1I-2c
q = [o001]
Py3y + P18 Pyya Pyya
T: Pyya Py3y - P1ud Pyy8
Pyya Pyy8 P3.y \
L T T,
pv? 105.75x1010  58.18x10%0 58.,18x1010
dynes/cm dynes/cm? dynes/cm?
a 0 ] 0
8 0 0 -1
v 1 U 0
+ + + -
For ii-l[lon and is-l[lon
2 v2
- 1 = = > 1.> +
or k, = =[101] and k = =[101]
1 V2 8 2

Polarization Choices
w Typ?

(Ty1 + T23)?

(Tgy - T2)?

(T - T3a)?

B S — . . —



q

ap1y + Bpi2 + YP1uy

Ypiy + (& + B) pge

Table IITI-24

1
%]

{110]

yP1y + (@ + B) pge Ypuy + (a + B) Py

apy2 + Bp11 - ypiy (o - B) py1 + YPuy

yPuy + (a + B) pyy  (a = B) py1 + YPuy (a + B) p3)
L s
L T T
- 92.12x1039 60.11x1030 32.65x1030
dynes/cm? dynes/cm? dynes/cm?
a -.72 -.09 -.60
3 -.59 -.61 +.53
Y -.38 -.78 .49
Yor ii = [100] and is = [T00]
or Ei = (60) and k_ = {100]
Polarization Choices Observed Components
vV T442
VH Ty, 2
RV T, 42
HH T,,2
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B. PAST EXPERIMENTS i
In 1930 E. Gross observed the Brillouin components in light
scattered by crystalline quartz (77). This was the first observation
of Brillouin scattering in a solid. Brillouin and Mandel'shtam had
predicted that these satellite lines would arise from ". . . thermal
i
elastic waves which propagate in the medium with the velocity of sound i

and produce periodical variations of the amplitude of the scattered
light, thus giving rise to two new frequencies" (77).

Following the observations of Gross, investigators in India also
observed the Brillouin components in crystalline quartz (78). Exten-
sive theoretical and experimental work has been performed on quartz by
Indian scientists starting in the 1930's and continuing into the present
decade (79).

The first observaticn of the Brillouin spectrum of quartz using a
laser source was reported in 1966 (80). 1In recent high resolution
Brillouin experiments on quartz using a single frequency laser, the
linewidths (= absorption of acund) as well as the frequency shifts have
been measured (81).

Brillouin scattering was not used as a technique to measure the
elastic constants of solids until the 1950's (82). Elastic constants
of solids had been measnred by several methods: the static method
(83), the resonance, or dynamic method (84), the ulirasonic method (85),
and by means of light diffraction (86). Since quartz is widely used
as a transducer, there are several reliable measurements of the elastic
constants of alpha quartz et room temperature (74, 82-89). There have

also been measurements of the temperature dependence cf the elastic
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constants of alpha quartz (1", 90-92) and measurements of the elastic
constants of beta quartz (93, 34 95), but these have been mace with
the lower frequencies associated with the conventional methods men-

tioned above. not light scattering.

C. APPARATUS

Since Brillouin shifts are generally only a fraction of a cm~1, 13
high resolution spectrograph and a relatively narrow bandwidth erciting
light source are required. The pre-laser Brillouin studies were per-
formed with a high resolution prism or grating spectrograph using a
single line of a Mercury arc as the exciting source.

The Brillouin apparatus used in the present experiments is basically
the same as that used by Chiao and Stoicheff (96) and has been described
in the literature (97). Fig.(II1-3) shows the layout of the Brillouin
apparatus. A Spectra Physirs (Model 125) He-Ne laser with an output of
80 mw at 6328 & secves as the exciting source. The polarization of the
emitred light could be changed continuc 18ly by a Spectra Physics
(Model 310) polarization rotator. Normally the incident light is polar-
ized either perpendicular (V) or parallel (H) to the scattering plane.
The beam is focused by a 50 cm focal length lens (LF) into the quartz
sample placed in the specially constructed oven (Appendix B). Light
scattered at 90 = 1° to the incident direction is collected and made
parallel by a 23.5 cm focal length lens (Lc). A 6328 K, narrow pass
filter is placed after the lens to eliminate the *lackbody background
when working at elevated temperatures. At times it was necessary to
select a certain polaricacion of the scattered light and this was d-mae

with a Polaroid HN-38 polarizer.
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The scattered light was frequency analyzed by a pressure swept
Fabry-Perot etalon (98). The etalon consists of a pair of Perkin-
Elmer fused quartz, 2 inch diameter, 3/100 interferometer flats
separated by an invar spacer. The flats were coated for a reflectance
(R) = 987 at 6328 A. This gave a contrast of ~10%. The etalon spacing
was the same throughout the experiments, 0.3 cm * 1% which yields a
free spectral range (FSR) of 1.67 cm™! = 50 GHz. The overall working
finesse of the system, measured as the ratio of the FSR to the full
width at half maxinum of the Rayleigh peak, was between 25 end 35,
which for a 0.3 cm spacer corresponds to a resolution of 2.0 to
1.4 GHz. This approached the maximum finesse obtainable with the laser
whosée linewidth was 1.5 GHz.

The pressure scan was linearized with a constant differential flow
controller made by Moore Products Co. (Model €3-BU-L). The flow rate
of the dry nitrogen gas was controlled by an 0lin-Matheson (Model-4133)
needle valve. The high pressure side of the controller was kept at
2 atmospheres by a regulator valve With this pack pressure the flow
rate wag constant to 1% over 2 orders.

An iris diaphragm, which followed the Fabry-Perot, served as the
system aperture stop, determined the collection solid angle and the
diameter of the plates used. Only the 2.5 cm central region of the
Fabry-Perct plates was used.

A 36 cm. f.1.1lens was used to focus the parallel light from the
Fabry-Perot onto a 1.3 mm. pinhole which blocked all but the central
fringe. A 20 cm. f.l.lens was used to focus the light passing through

the pinhole onto the photocathode of a dry-ice conled, ITT-FW130

-
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photomultiplier tube. The PM tube had an effective photocathode
diameciee of 0.1 inch with an S-20 surface. With this small cathode

the dark count rate was 75 cts/sec at room temperuture and 0-2 cte/

sec at the temperature of dry ice. The signal processing circuitry was
the same as that used in the Raman scattering experiments: an emitter
follower, linear amplifier, singie channel analyzer, ratemeter and

strip chart recorder.

The Brillouin frequency shifts were measured directly from the
recorder charts. The centers of the peaks were determined by graphically
dividing in half the width of the peaks near the half power level. The
shift , in fraction of an FSR,was taken as the distance between the
Stokes and anti-Stoles components of the mth order spectrum divided by
the sum of the m-1 to m anti-Stokes and m to m+l Stokes component sepa-
ration. Measuring in this way averages the component displacements on
the trace in such a way that errors due to uniform changes of the scan
rate are cancelled.

Three different samples of natural Brazilian quartz were used.

The sampies were approximately cubic in shape with each edge abovt 12 mm
in length. Each sample was cut and polished with the crystallographic
axes appropriately oriented so that the incident and scactered wave-
vectors were perpendicular to polished faces. In addition, a plece cf
synthetic quariz supplied by Sawyer Research Corporation was studied

and the results were compared to the natural quartz. The samples of
natural quartz were unusually clear and free from imperfections as
evidenced by the small Rayleigh peak in the Brillouin spectrum shown

in Fig. III-2.




109

D. RESULTS AND DISCUSSION

Table I1I-3 summarizes the results of alpha (25°C) and beta quartz
(600°C) for the four phonon propagation directions studied. We show
the polarization of the phonon as determined from the solution of the
elastic problem,eq.(III-15) (L = longitudinal, T, = low frequency trans-
verse, T2 = high frequency transverse). We also state whether the optical
coupling was strong enough to allow observation of the light scattered
by the particular phonon. ov? is given in terms of the elastic constants.
In ~he next two columns the mi—.avrical values of pv2 measured by light
sc: tering are compared with the values calcu.ated from published elastic
constants. We immediatelysee that the agreement between the elastic
constants measured by light scatiering and the elastic constants measured
by ultrasonics or other techniques is good. Since the frequency of sound
measured in Brillouin scattering is at least 3 orcdersof magnitude greater
than the frequencies used in ultrasonics, we can conclude that there is
no appreciable dispersion of tne elastic constants for quartz, for
frequencies up to 30 GHz.

There is disagreement n the literature on the sign of the elastic
constant Clu" Several authors zeport Cla > G (83, 90, 32) and several
others, including the IRE standards (3) select Clh < 0 (74, 84, 89).

From measurements of velocities if is impossible to remove the ambiguity
because only Clﬁ appears in the velocity equa ions (Table II1-3).
However by measurement of the intensity of the Brillcuin peaks we can
determine the sign of Clu(99).

We studied the light scattered by [Oii] phonons. Since the positive

directions of Y and Z are not known, there are four possible a direc~ions

IR
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with light incident along Y and scattered along 2Z: [011], (0II), {oii],
and [011]. If we solve the elastic problem for the four q vectors with

Ciy > 0 and C;, < 0, we obtain the following eigenvalues and direction

cosines:
C14>0 Clu<0
L T2 T L T, Ty
[011] = [0I1] (4) (B”)
pv-(1010dynes/cm?) | 97.63  67.05  38.78 [130.5  41.97  30.99
a 0 1 0 0 0 1
] .52 0 -.86 .74 .67 0
Y .86 0 .52 67 =74 c
[cI1] = [01]) (B) (A7)

pv2(1010dynes/cm?) | 130.5 41.97  30.99 97.63 67.05  38.78

a 0 0 1 0 1 0
B ".7“ -.67 0 -.52 0 086
‘Y .67 "07“ 0 086 0 052

From the measurement of the frequency shifts we distinguish between cases
A-A’ a4 cases B~-B”, We note that the mnagnitude of the directions cosines
for A and A” are equal but have different signs. The same is noted for B
and B°. The particular scattering geometry selected had horizontally
polarized light (H) incident along Y and unanalyzed light scattered along
Z (T). Thus in terms of the T matrix, we study the T, and the Ts elements
(eq. III-23)., The ratio of the intensity of the longitudinal peak to the

transverse peak is given by eq.(III-22):
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2 2
L . ™™ af, + 19,
I . 2 ¢ 2
T v (T2 + Ta)y

(111-26)

Using the values of the Pockel's coefficiente listed in the appendix
and the calculated eigenvalues and direction cosines (Table III-1), we

calculate the ratic in eq.(III-26):

{(a) For cceas A-A” we calculate

A Ciy > 0 A’ Ciy < O
IL < IT2 IL > IT2
and we observe
IL < IT2

(b) For cases B-B” we calculate

B Ciy > O B Ciy <O
IL > ITl IL < ITl
and we observe
IL > ITl

Thus we conclude that C;, > O. This result is in agreement with a similar
calculation based on the phonons propagating along [100] (99).

The temperature dependence of the frequency of 8 acoustic modes,
({100}-L, [010]}-1, [010]-T2, (0O1]-L, [0O1]-T, (110]-L, [110]-Tp, [110]-T;),
was studied and the results are plotted in Figs. III-4 to III-B . The

temperature dependence of the frequencies of the modes studied all exhibit
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Fig. iII-5. Measured frequency 2 (em~1!) vs T (°C) of
the [010]-L and [010]-T, phonons.
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Fig. I1I-6. Measured frequency Q(cm~!) vs T (°C) of the
(001]-L and [001]-T phonons,
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similar behavior. As the temperature is increased from room tempera-
ture to the transition temperature the frequency decreases grudually

to a value that is 10 to 20% of the value &t room temperature. At the
trans {tion temperature the frequency reaches a minimum value and just
above the transition temperature there is an abrupt increase (~15%).

At the temperature corresponding to the minimum of the frequency, the
intensity of the Rayleigh component increases to A10% times its intensity
just below the transition. The origin of this anomaly in the Rayleigh
scattering will be discussed in the next chapter.

Fig III-7 is a plot of the temperature dependence of the frequency
of the [110]-L mode for samples of natural quartz and synthetic quartz.
We see very good agreement between the two samples.

Fig. ITI-9 35 a plo. .f the temperature dependence of the intensity
of the [100]-L Brillouin component. Eq. (III-22) predicts a linear
temperature dependence of the intensity far from the transition tempera-
ture where VL2 ie independent of temperature (Fig. III-4). 1his 1is
observed in Fig. III-9. At the transition temperature where there is
an abrupt Increase in the velocity, there is a corresponding decrease
in the intensity due to the 1/\'L2 factor in eq. (III-22). This also 1is
observed in Fig. ITI-9.

From Table III-2 we noté that we can measure the temperature
depe."dence of the following elastic constants: C;;, C33, Cyy and Cyy.
Since the c.vpling to the [010]-T1 mode is too weak to observe, we could
not measure Cgg = ; (C;11- C13). In none of the cases studied were we

able to measure Cyj3. Wi h C;; measured by the [100]-L phonon, we added

and subtracted the frequencies ~f the [010]-L and [010]-T; to find Cyy
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and Cjy. Measurements of [010]-T gave us another method of determining
Cyys the twd measurements agreed. Fig, III-10 is o

plot of the temperature dependence of the elastic constants C;y, C33,
Cyy and Cyy measured by light scattering. Also plotted, for comparison,
are the temperature dependence of the elastic constants as measured by
ultrasonic techniques (11, 90, 92, 94). We see that there is good agree-
ment between the temperature dependence of the elastic constants measured
by light scattering techniques z.d the temperature dependence of the
elastic constants measured by ccnventional ultrasonic techniques and we
can conclude that there is no appreciable frequency dispersion of the

elastic constants up to 30 GHz,
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Fig. III-10. C33, C;3, Cyy and Cyy (10%90 dynes/cmz) vs T (°C).
Comparison 18 made with the elastic constants measured by ultrasonic
techniques (11, 90, 92 and 94).




CHAPTER 1V

THE ALPHA-BETA TRANSITION REGION

In Chapter I we reviewed the accepted theory of ihe quartz transi-
tion as proposed by Ginzburg (31). We repeated Ginzburg's calculation
and predicted an increase in the scattered light at the transition
temperature of ~10*, We also discussed the experiment of Yakovlev
et al., who observed that the scattering of Hg light by quartz increases
by ~10* over the room temperature intensity and that under white light
iliumination the scattering volume appeared as a ''fog zone" (35). This
phenomenon was termed "critical opalescence' since it resembied the
intense scattering (known as critical opalescence) observed in fiuids
near the critical point. It has been generally accepted that the large
increase in scattering at the alpha-beta transition arises from the
divergence of the fluctuations of the order parameter n. Ginzburg
identified n with the totally symmetric A; optical mode whose room
temperature frequency is 207 cm~l. As the transition temperature is
approached, the frequency of this mode would decrease toward zero while
E the fluctuations of n diverge.

In this chapter we investigate the Raman and Brillouln scattering
ia the transition region, 570°C to 576°C, and study the intense Rayleigh

scattered light at the transition temperature (100).
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A. RAMAN SCATTERING IN THE ALPHA-BETA TRANSITION REGION

I Chapter II we studied the Raman sca.tering by crystalline quartz
from 20°K up to 873°K (=600°C). Ve showed that it is not the 207 cm~!
line, but a small A} satellite at 147 em™! at room temperature whose
frequency approached zero as T -+ Tt from below. The probable origir of
this complication was discursed in terms of anharmonic coupling between
one and two phonon excitations (57). We showed that at room temperature
the 207 cm! 1ine is essentially a zone center A; optical vibration,
while the feature at 147 cm-} is a two phonon zone-edge excitation. As
the temperature is raised the two excitations become mixed due to the
anharmonic coupling and the observed features can no longer be described
as one or two phonon processes. For temperatures near the transition
temperature, the excitations again become distinct and the lrw frequency
component has become the one phonon mode and the high frequency component
is the two phonon excitation. Thus, in this s~~tion we restrict ourselves
to temperatures close to the transition temperature so that the low
frequency A; vibration (still called the 147 cm™'line) is the "soft"
zone center optic mode.

Tha results of the transition region study of the frequency of the
147 cm~! line are shown in Fig. IV-1. We see that on heating the
frequency decreases to a minimum of 30 cm~! at the alpha to beta transi-
tion temperature, TaB = 573.4°C, at which point the line disappears from
our spectra. On cooling, the line reappears at the beta to alpha transi-
tion temperature, TBa = 572.4°C, one degree below the temperature at which
it disappears on heating. The soft component is quite broad (> 80 cm‘l;

Fig. 1I-8) when it attains its minimum frequency of 30 cm-l. The intense
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Rayleigh scattering suddenly appears with the disappeairance (on heating)

and the reappearance (cn cooling) of the Raman components. The spectral
width of the Rayleigh line was never resolved in this experiment (instru-
mental resolution: "2 cm-1),.

Thus the smooth collapse of the soft mode into an overdamped quasi-
elastic component envisioned by Ginzburg]l)s not observed and the intense
Rayleigh scattering cannot be considered as the overdamped remmant of
the soft optic lattice vibratiom.

We also studied the intensity of the 355 cm~! 1line as a function of
temperature in the transition region., We recall (Table I-3) that the
355 cm-! line 18 a Raman active A; vibration in alpha quartz which becomes
a Raman inactive and infrared inactive B; vibration in beta quartz. Its
frequency changes very little with increasing temperature (Fig. II-6) and
its intensity decreases steadily toward zero as T -+ Tt (Fig. I1I-7).

Fig. IV-2 is a plot of the intensity of the 355 cm~! line in the transi-
tion region. It shows that the intensity ci the 355 cm~! line exhibits
the same thermal hysteresis that was observed in the frequency of the
"goft" moif (Fig. IV-1). What is striking is the persistence of tlie

355 c;:tji@gg through the fog zone and into the beta phase. On further
heating of the crystal, this line gradually disappears, On cooling from
the beta phase this spectral line appears before the beta to alpha
transition occurs. When the fog zone appears and the crystal transforms
to alpha quartz, there is an abrupt incrensse in the intensity of the

355 cm~} line. The presence of this spectral feature in the beta phase
where it 1s forbidden by group theory is probably due to strains present

in the crystal as it undergoes its transition. These strains locally




127

s:nje1adwal ay3l JO UOFIDAITP 9yl 2ILDTPUY Smo1ae 3] °*uofBaxr aanjexadwal uorITsURL]

*a8ueyd

ayl ur apom ~< .dlsu GGE @yl Jo (D,) 1 sA (das/sid) Kiysuajuy dead “‘Z-Al ‘814

(Do) 1
) A" 245 14G
] ] il o
—
-0
| \ -08
-02|
Buispaidep 1 x * x -
~09|

Buispaioul L e

dpow ly ,.wd GG¢

(Do) L SA (29S/510) Ajisuaju| )ypad

....... P T VIV

yDad

{)as/842) Ajisuaju




break the symmetry and can allow a normally ina- .ive Raman mode to

become Raman active.

B. BRILLOUIN SCATTERIING IN THE ALPY..-BETA TRANSITION REGION

In Chapter III we discussr. the Brillouin scattering by crystalline
quartz from room temperatv.e up to 600°C. 1In this section we restrict
ourselves to Brillouln measurements of phonons propagating in the [100],
[010], [001] and [110] directiuns in the transition temperature region,
570°C - 576°C. The spectra of all phonons studied showed a distinct
change at the transition temperatures. Fig. IV-3 shows the spectra of
the [100] phonons for (a) alpha quartz just below the alpha to beta

transition temperature (Ta = 574.30 ¢ ,03°C), and (b) beta quartz just

B
above the transition temperature. Fig. IV-4 is a plot of the measured
frequency shifts of the [100]-L phonon in the 571°C - 576°C temperature
region. We see that on heating the frequency exhibits an abrupt increase
at T08 = 574.3°C as the alpha to beta transition occurs, and on coolirg

the frequency gradually decreases and at T, = 573.0°C the transition

Ba
beta to alpha occurs. At these two temperatures, intense Rayleigh scat-
tering is observed.

Figs. IV-5 and IV-6 show the behavior of the linewidth and the peak
intensity of the [100]-L Brillouin peak in the transition temperature
region. The temperatures where the abrupt chang2s occur in these properties
are the same temperatures at which the fog zone appears. It is interesting
to note that the cooling curves of the frequency shift and the linewidth

strongly resemble, aside fiom the discontinuities, the relarational process

occurring in second order lambda type transition treated theoretically by




*.£0°7LS = maH *zaaenb eiaq (q) pue
z3ienb eydye (e) 103 uorid2arp [00T] 23 uTt Supijefedoid suouoyd 103 Bi3dads urnNOTTIigd "€-Al 313

(1-wd) U
9’ 14 ' O ¢- b- 9-

129

\w\ J y

Do LCPLS (o)

Je IEPLS ()




*93uey> ainjeiadwal 513 JO VOTIDVAITP 9IBDTPUT SMOIIY ‘uoTdsa ainjeradwsy wOTITSURII 3Y3I UT

130

uouoyd 1-[00T] 343 30 (0,) 1 sa (;~md) ¥ Kouenbai3y ps-.sean *7-AT 314

(9,) 1
A G.lG VLG €LG aLS 1LS

| - | r 1

- 8G0

—’

(-rw)

% ¢ H - ww.c |

buisoasoep | . 890

buisoaiour | e
1 -[ooi]
(3,) 1 SA(-w2)T

-0.0




*yead upnoTITIg [eurpnafluoy
3y3 Jo wnufxew Jyey 3I® YIPTMIINF 3yl woxy syead y3yajdey sy3 Jo wnwixen ITeY IB YIPTA
-[In3 ay3 Surioeiiqns £q painseau Sem YIPTMAUTT 3yl -uoT3a1 sanjeradwsy noOFIFsuUBRI] Y U

uouoyd T-[00T] 2U3 203 (J.) 1 SA (SITun A1eI3TqIE UT) J 'YIPTMAUTT 3yl “G-A1 314

(Do) L

9LS GG b2S €28 2.8 S

131

~

.T.-.. + l—

K4
- £

(silun Kipa}1quo) €]




-a3upyo aanieiadmay JO UOTIDBITP 9yl 2IBDTPUT smolle ayl -uoyda1 aanjeiadmoy

132

uoylfsue1l ayi uy uouoyd T-{00T) 2u3I Fo (D,) L SA {038/S1d %) K31suajur Wead °*9-Al 8.1

au .v F .
- VA nm.m tw.n cle N“-n FAS
|
2 &
T_ R ¢
[ J
(=]
b
.lN -
b |
s
€ o
<
M
X ® ™
k4 4 -» ﬁln v
g
-9

buisDarep |
Buispsaoul | ®
uouoyd - [00l]
(De) L SA (388/843%) AiIsusiu) yoed




133

Landau and Khalatnikov (101) and observed in ferroelectric TGS in ultra-
sonic experiments (102) and in Brillouin experiments (103).

The measured Brillouin frequencies vs temperature in the transition
region for the phonons: ([01C]-L, {010]-T.. [001]}-L, [001]}-T and {110]-L
in natural quartz are shown in Figs. IV-/ to IV-9. In all curves a
thermal hysteresis is observed varying from 0.55 C° to 1.30 (. The
hysteresis loops of the longitudinally polarized phonons are approxi-
mately triangular in shape and for the transversely polarized phonons
are approximately rectangular in shape. For the longitudinally polarized
phonons there are large increases in the frequency on heating (v15%)
while for the transversely polarized phonons the chainge in frequency is
smaller (v5%).

In Figs. IV-10 to IV-12 we plot the calculated elastic constents,
C15 C33, G4y and G in the transition region. There are no ultrasonic
measurements this close to the transition temperature to compare with our
results.

In all crystals, the fog zone was observed at the temperatures where
the abrupt changes in the spectra occurred. The temperatures at which
the fog zone appeared differ for the different phonons ctudied. This
can be attributed to the fact that different crystals were used and the
transition temperature can vary from crystal to crystal (.04). Also
there is a lack of temperature reproducibility after dismantling and
reassembling the oven. Considering all the cases studied, the average

transition temperatures ar::
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T ., =573.6 t _6°C
af

T, =5'2,6 £ ,5°C
Ba

Thus a hysteresis of about 1 C° wis observed. This hysteresis implies
that the transition may well be first order, rather than second order as
predicted by Ginzburg (31).

The suddea increase in the Riyleigh acattered light (~10" times the
room temperature intensity) occur: at the same frequency as the unshifted
1ight within the resolution of the Brillouin experiments (~.06 em-1).
There was no observed spectral structure to the opalescence. Thus in the
Brillouin experiment we see no mode whose frequency approaches zero and

the observed opalescence is not due to any soft acoustic mode.

C. RAYLEIGH SCATTERING IN THE ALPHA-B."TA TRANSITION REGION

In the Raman and Brillouin experiments the intense Rayleigh scatter-
ing in the transition region was spectros.opically indistinguishable from
pure elastic scattering. Since thke spectral linewidth of the "critical
opalescence" was too small to measure with either the Raman spectrometer
or the Brillouin interferometer, we next consicered performing a light-~
beating experiment of the type used to measure th= Rayleigh linewidth in
critical opalescence in fluids (105). This experim'nt was never
performed since we discovered during preliminary visu:.l observations of
the scattering colum that the "ecriticsl opalescence" is, in fact, elastic
scattering.,

Wher laser light 1is scattered from a stationary target, t e scattered

light exhibits a characteristic granular pattern. If the target .-oves
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slowly, the granularity also appears to move. If the target moves so
rapidly that the granularity changes in a time shorter than the response
time of the eye, the granularity disappears, and one sees a uniform
scattered intensity distribution. (This effect, which arises from the
spatial coherence of laser light, was discussed by Rigden and Gordon in
1962 (106).)

We observed that when the crystal was below the transition tempera-
ture, the scattering column appeared to be homogeneous. (A photograph
of the scattering column with 15 min exposure is shown in Fig. IV-13a.
The bright specks are crrstal imperfections.) When the crystal was
heated to the transition temperature the "fog zone" which appeared did
not look uniform, but exhibited the characteristic granularity associ-
ated with elastic scattering (107). Once the fog zone started to
traverse the crystal itas progress could not be halted. It took 2 to 3
min for the fog zone to pass through the crystal. Fig. IV-13b is a
photograph of the scattering column in the fog zone with 2 sec exposure.
The granularity is apparent in the photograph.

In Fig. IV-13c we show a photograph with 5 min exposure in the
beta phase. In addition to the specks caused by imperfections, there
is some residual structure visible which slowly disappears as the tem-
perature is further increased. On cooling, the above sequence is
reversed, with the fog zone reappearing at a lower temperatu-e, as we
indicated earlier.

The persistence of static granularity for many seconds in the light
acattered from the fog zone suggests that the intense scattering is
completely elastic, originating from some essentially static phenomenon

rather than from thermodynamic fluctuations of the order parameter. A




Fig. IV-13. Photographs
crystalline quartz illuminate
(a) T < Tt’ 15 min exposure;

(¢)T> Tt’ 5 min exposure.

of the scattering cclumn in
d by a 6328 A He-Ne laser beam.

MbYT-= Tt’ 2 sec exposure;
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possible explanation of this effect was suggested by Young who performed
extensive X-ray measurements on quartz through the alpha-beta transition
(20). Young found that as the transition is approached from below, the
structure separates into domains of Dauphiné (or electrical) twins. The
twins, which are related by 180° rotation about the C axis, correSpo#d to
opposite signs of the order parameter n (see Ch. I). As the transition
is approached, the domain size decreases and the density of domain wa.ls
increases. Young suggested that the development of Dauphiné twins is a
special type of transition in the long range order which starts a few
degrees beiow the alpha-beta transition and continues until the crystal
is completely twinned, i.e., equal volumes of each twin., Within each
twinned region the short range order of either the «; or a, (Fig. I-4)
configuration is preserved. The completely twinned state, in which the
long runge order transition has gone as far as it can and still be termed
long range, may be considered as a special kind of intermediate state.
This complete twinning occurs at the start of the alpha-beta transition
proper which is a transition of short range order.

The large increase in the light scattering presumably arises from
inhomogeneous strains present in domain walls which perturb the dielectr.c
constant locally leading to large light scattering efficiencies, an :ffect
which we have previously observed in ferroelectric TGS (108*. Tlus, it
is the domain walls produced by the microtwinning which woulus be respon-
sible for the observed opalescence,

Another possible source of the inhomogeneities in the index of
refraction in the quartz crystal causing the "opalescence" near the

transition temperature is the formation r. beta quartz regions inside
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the ilpha quartz crystal. This type of nucleation is possible 1f the
treasition 1s first order. On heating the crystal near Tt beta quartz
c’n exist in a metastatle state within the alpha quartz structure.
Conversely, on cooling from the beta phase, alpha quartz can exist in
a metastable state in the beta quartz structure.) Since the indices of
refraction of beta and alpha quertz differ, the regions of beta quartz
will scatter light. An analogous effect could occur in a fluid just
below the condensation temperature in the absence of gravity. The
fluid might break up into dropletslwhich would produce anomalous scat-
tering. Such an effect would occur most strongly very close to Tt since
it would only beccme energetically possible as the surface t~ns.ion
vanishes. In the case of quartz, the droplets--beta "droplets'--are
locked in position in the alpha quartz '"fluid."

We can estimate the size of the beta regions within the alpha
quartz structure from a measurement of the infensity of the scattered
light at the transition temperature. We assume spherical regions of
volume V and index of refraction ng in a medium with an index of refrac-
tion n. if |nu-n8| = |An|<<1 we apply the Rayleigh-Gens criterion

and calculate the Rayleigh ratio (109):

2 2
R = 1 (n2 - n2) \ cm™1
)‘olo a 8 2

2
= JL;-an (an)2 V cm!
A
o

where we have assumed that at the temperature where tha maximum scatter-

ing occurs the spherical beta regions occupy half of the scattering
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volume. We set this equal to the measured Rayleigh ratio of the light
scattered by quartz at Tt (eq. I-26):

2
R = 2.0 x 10-%n™! = I3 x10"2cn™? (Ao = 6328 })
A

o
Using the measured values of n and An near Tt (I-25) we can solve for

V and find the radius of the beta regions within the alpha structure.
The results of this calculation yield a radius for the beta region of
r~ 500 A. (In a similar manner we could have assumed we were cooling
the crystal and calculated the size of the alpha regions within the

beta structure.) This result is consistent with the results of

Yakovlev zt al, who observed a A~" dependence of the scattered intensity
within the fog zone and deduced that any optical non-uniformities were
smaller in size than the wavelength of 1light (35).

Recent small angle X-ray scattering experiments performed on quartz
revealed no excess scattering during the phase transition (110). This
result favors the first of the above explanations because the X-rays
are insensitive to the microtwinning of the type Young supeested since
the electron densities of the two Dauphine twins are the same, while the
X-ray scattering was observed at sufficiently small angles (< 1/4°),

so that the regions of beta quartz (of the size estimated abova) would

have produced additional scattering near the transition temperature.

D. CONCLUSIONS

On the basis of the Raman, Brillouin, and Rayleigh observations,
we conclude:
1. Because of the static granulari.y of the light scattered from

the fog zone, we believe that quartz does not exhibit critical

il
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opalescence in the usual sense of diverging fluctuations of
the order parameter, despite the excellent agreement between
the observeci scattering intensity and the theoretical predic-
tion based on the assumption of critical point fluctuations.
The intense scattering which is observed near the transition
temperature is due to static inhomogeneities of the index of
refraction of the quartz crystal. These may be a consequence
of the extensive microtwinning of the Dauphiné type that occurs
near the transition, or the formation, on heating, of regions
of beta quartz within the alpha quartz structure. The results
of recent X-ray experiments suggest the former explanation.
The i.ysteresis observed in the Raman and Brillouin experiments
suggest that the transition is first order rather than second
order. However, this distinction is not really adequate since
the phenomenon of micro-domain formation considerably compli-

cates the description of the transitiom.
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CHAPTER V
SUMMARY AND CONCLUSIONS

Tre temperature dependent Raman and Brillouln scattering spectra
of crystalline quartz have been studied with special emphasis on the
alpha-beta phase transition region.

In the Raman experiments we studiel the Raman active A} and E
vibrational modes. Scott and Porto (45) showed that the LC-TO
degencracies of some of the E modes were lifted due to long range
electrostatic interactions arising from the oscillating electric field
assoclated with the infrarved activity of the E modes. Qur results
agrez with those of Scott and Porto. Also, the frequencies of the E
modes were measured as a function oi temperature and showed little
change with increasing temperature.

Theoretical considerations (31) and early temperature dependent
Raman studies of quartz {23) showed that the frequency of one of the
A1 vibrations, the 207 em-! mode, decreased toward zero as the transition
temperature was approached from below. OQur studies revealed an extra
line of A; symmetry (frequency at yoom temperature: 147 em-1) whose
frequency decreased toward zerc as the transition temperature was
approached. In addition, above the transition temperature, in the beta
phas2, there was an extra line of A} symmetry. Scott (57) suggested
that tlie =2xtra line in the alpha and beta phases is a second order Raman

line. He attributed the anomalous temperature dependent behavior of the
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first and second order Raman lines to anharmonic coupiing between

the "soft" zone center, 207 cm-! excitation and the two zone edge
acoustic excitations. In the transition region, the low frequency line
is the '"soft" zone center phonon. The frequency of this phonon did not
g0 to zero at the transition temperature but decreased to a finite
value of 30 cm~! and disappeared from our spectra. Coincident with
this disappearance a region of increased elastic scatteriny traversed
the crystal. Because the frequency of the soft mode does nct decrease
continuously to zero at the tranaition temperature, the observed
"opalescence' is no~ due to diverging fluctuations associated with the
"soft" optic mode as had been proposed by Ginzburg (31). On cooling,
the low frequency A; vibration reappears at a temperature 1 C° lcwe.
than the temperature at which it disappears on heating.

In the temperature dependent Brillouin scattering experiments we
found good agreement between the elastic constants measured by light
scattering and the elastic constants measured by ultrasonic techniques.
Thus no frequency dispersion in the elastic constants is apparent. In
the transition region, none of the frequencies of the acoustic modes
studied approached zero as the transition temperature was approached.
Thus the observed "opalescence" is not due to any diverging fluctuations
associated with acoustic vibrations. The hysteresis observed in the
Raman and Brillouin experiments suggests that quartz undergoes a first
order phase transition as opposed to a second order transition proposed

by Ginzburg.
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Observations of the Rayleigh scattered light in the transitica

region showed that the large increase in the elastic scattering (v10%),
the so-called opalescence, was due to a static process as opposed to
the dynamic process associated with true critical opalescence. The
large increase in scattered light at the transition temperatures was
due to inhomogeneities in the index of refraction created by either

the extensive microtwinning of the Dauphiné, or electric, type as
reported by Young in his X-ray analysis of the phase transition of
quartz (20), or due to the formation of regions of beta quartz, on

heating, within the alpha quartz structure.
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APPENDIX B

OVEN, TEMPERATURE CONTROL, AND TEMPERATURE MEASUREMENT

OVEN

There were several unusual considerations in designing an oven for
light scattering experiments near the alpha-beta phase transition of
crystalline quartz (573°C): 1) Temperature stability and control of
$0.01°C was sought with a minimum of thermal gradients across the sample
region; 2) There had to be two colinear ports to allow light to enter and
leave the sample region. A third port was necessary to observe the light
scattered at 90° to the incident beam; and 3) Crystalline quartz frac-
tures when heated too rapidly through the transition temperature region.
This cracking can be minimized if the temperature of the crystal is
changed slowly (€).

With these considerations in mind, a double oven structure with a
high thermal mass was constructed. Fig. B-1 shows a cross section of
the oven. The outer container is a stainless steel can 15.5 inches in
diameter. Harbison-Walker refractory cement was poured into the can
making a wall thickness of 3.5 inches. This large thermal mass preveats
us -from heating the crystal too quickly. The outer heater consists of
two Kanthol (REH-1) heating elements placed on top of each other and
connec ‘ed in series. Inside the outer heater 1s a stainless steel heat
shield used to smooth out temperaturz gradients. The inner heater is a

single Kanthol (REH-40) cylindrical heating element with holes 1n it to
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allow the 1light to enter and leave the samgle region. A hollow, Rhodium
plated, 1.25 inch diameter copper tube serves as an ianer heat shield
which fits inside the Kanthol element and smooths out the temperature
gradients. The use of a jood thermal conductor like copper is strategic
in reducing the temperature gradients near the sample region. The
temperature gradients are estimated at 0,02°C/mm in the sample region.
The Rhodium plating prevents oxidation of the copper at elevated tempera-
tures, There are 6.5 mm holes in the heat shield for light input and
output. A solid Rhodium plated copper cylinder is fastened to the inner
wall of the inner heat rhield to support the sample holder. The.sample
holder is a solid cylinder of copper, 1 inch in height, 1.25 inch in
diameter with a 11/16 x 13/16 inch hole for the crystal. There are

three 5 mm diameter holes in this piece to allow the light to pass through
the sample and to be observed. Fused quartz windows, 1/.6 inch thick,

5 mm diameter, cover these holes to reduce air currents. Evacuated fused
quartz cells, which allow light to pass through but limit any thermal
loss by convection, extend out from the sample region to the outside
section of the stainless steel can. Another solid, Rhodium plated copper
cylinder fits snugly in%o the sample holder and seals the sample region,
Thus the sample region is essentially surrounded by copper with heat
being supplied from the sides. The heat loss due to the rising of the
heated air was compensated for by a lavite plug with a heater embedded

in the end plate. The plug fits into the hole at the top of the oven

and a constant amount of heat is supplied to the heater (20 watts).
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TEMPERATURE CONTROL

A block diagram of the temperature control and measuring apparatus
is shom ir Fig. B~2. The outer heater raises the ambieunc temperature
of th~ sample region to 550°C. Thus only a small amount of power need
be applied tc the inner heater to increase the temperature of the sample
to the transition temperature: 573°C.

A Variac (Powerstat 2260) is used to limit the 220 V.A.C. line voltage
applied to the primary of the transformer. The Kantho. heating elements
have a very low resistanze (less chan one ohm) and a step down transformer
(220:32) 1is necessary to reduce the voltage spplied to the heaters. The
maximum power ratirg of the outer heater is 1 kW at 32 V and 33 A, A
Partlow time proportional controller (Model LFES) activates a mercury
telay in the secondary of the transformer. The sensor of the Partlow
controller is a steel tube encapsulating liquid mercury which expands and
moves a temperature indicator which has a microswiich mounted on it. As
the temperature indicator approaches the set temperature the microswitch
makes centact with a rotating cam (2 rpm) attached to the set arm of the
controller. The microswitch activates rhe mercury relay and turns the
outer heater off for a portion of the cycle. This controller alone is

able to conirol the oven within t § C° at 550°C.

A Tisher Proportional Controller (Model No. 15-177-50V2) with a
thermistor sensor controls the power supplied to the inner Kanthol heating
element. Since this :eating element has a very low resistance a trans-
former is required to step down 1110:8) the 110 V.A.C. output of the
controller. The inner heater has a maximum power rating of 280 watts at .

8 V and 35 A. The controller is essentially an A. C. bridge with the
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thermistor as the variable arm. The error signal froum the bridge is
amplified and is used to trigger two SCR's which 1limit the output of
the contrcller. The availability of a thermistor that can withstand
a temperature of 600°C in an oxidizing atmosphere is the limiting
iactor in our temperature stability. The thermistor used was supplied
by Carborundum Co. and has a resistance of 300 ohms at 575°C. The
temperature stability of the oven is 0.03°C/hr. Since no spectrum
took more than 10 minutes to record, the temperature is essentially
constant during the recording of the spectra.

In the trauarition region the temperature can be changed by .03 C°
increments. Each time the temperature is changed by 1 degree or less,

45 minutes to an hour is allowed for the oven to equilibrate.

TEMPERATURE MEASUREMENT

A Rosemount Engineering Company Platinum resistance thermometer
(Model No. 104M4BACHT) is used for temperature measurement. Its
resistance is measused by an equal ratio arm (1 KQ), laboratory con-
structed Wheatstone Bridge. The adjustable arm of the bridge is a
Ceneral Radio Decade box (Model No. 1432-W) with variable resistance
from .01 ohm to 9999.99 ohms. The null detector is a Honeywell Elec-
tronic Null detector (Model No. 10411-WG). The resistance of the
thermometer in the transition temperature region is approximately 1230
ohms and the slope of the R vs T curve is .75 2/°C. Thus a .01 ohm
change corresponds to a change in temperature of .0075 C°. Our sensi-
tivity was limited by the amount of current we could supply to the
thermometer without appreciable self heating. The overall sensitivity

of the temperature measuring system at 573°C is 0.02°C.
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Tue absolute accuracy of the temperature measured is within z 1 C°.
No effort was made to compensate for the lead resistaice or changes in
the leaa resistance as the temperature of the oven is raised. The
triple point rasistance of the Platinum thermometer with all the leads
used in the experimsat was checked and found to be within 0.3 ohm
(=0.2°C) of the calibrated value. The thermometer is an immersion type
and has an element tength of . inches. Since the thermometer is placed
isbove the sample the temperature read is averaged over a region above
the sample. However, since the sample and the thermometer are surrounded
by copper, and since the thermal gradients are very small, the tempera-
ture read by the thermometer is close to that of the crystal. Also our
measured transition temperatures agree very well with other published
values of the transition temperature (1).

Summarizing the performance of the temperature control and measure-
ment of our system:

1. The sensitivity of the temperature control in the transition

region is 0.03°C.
2., The absolute accuracy of the temperature measurement is within
t1°C.
3. The relative sensitivity ~{ the temperature measurement in the

transition region is 0.02°C.
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